Hydra-Cell® Diaphragm Pump Technology for Minimizing Shear Effects in EOR Polymer Solutions

Phase II Report

Evan Patrick Egenolf

Hydra-Cell® Diaphragm Pump Technology for Minimizing Shear Effects in EOR Polymer Solutions - Phase II

Contents

1	Introduction	. 3
2	Industry Review	. 4
2.1	Economics of Polymer Flooding	. 5
3	Reservoir Engineering	. 6
3.1	Simulation & Sensitivity Analysis	. 7
4	Conclusions	. 8
5	References	C

 $Wanner^{\rm TM} \ is \ a \ trademark \ of \ Wanner \ Engineering, \ Inc. \\ Hydra-Cell^{\circ} \ is \ a \ registered \ trademark \ of \ Wanner \ Engineering, \ Inc.$

Hydra-Cell® Diaphragm Pump Technology for Minimizing Shear Effects in EOR Polymer Solutions

1 Introduction

Polymer flooding continues to be the dominant form of chemical-enhanced oil recovery. It is one of the few methods that has concrete proof of concept and economic advantage. Although these projects account for the most oil produced via chemical injection, there are many operational and design considerations that drastically affect field performance.

Besides emulsions and water quality issues, polymer degradation has the largest effect on the economics of these projects. Polymer quantity, viscosity, and injectivity drastically affect the CAPEX / OPEX expenses, cumulative production, and reserves in these projects.

This report is intended to organize past experiences, simulation results, literature review, and the technical understanding of the effects that pumps have on polymer solutions to characterize the extent of the benefits that low-shearing Hydra-Cell hydraulically actuated diaphragm pumps (manufactured by Wanner Engineering, Inc.) can have on polymer flooding projects through lower shear degradation.

2 Industry Review

Much of the science and literature pertaining to polymer degradation is on porous media and chemical degradation, with some limited focus on surface facilities (pumps, chokes, piping, etc.). Pumps are largely ignored in these projects, even though the pump is one of the first pieces of equipment the polymer slug comes into contact with and is one of the first points of significant shear degradation of the polymer solution.

Mechanical degradation can result in significant viscosity loss due to the irreversible scission of polymer macromolecules. It can occur in the injection facilities (turbulent flow), before the polymer solution reaches the formation, or in the near-wellbore area (laminar flow) [34]. Scissoring occurs when a polymer solution is exposed to high shear conditions, such as during the mixing of polymer solutions or the conveyance of a polymer solution in pumps and chokes [23].

What has typically been done to mitigate the shear degradation in surface pumps has been to use progressive cavity and triplex plunger pumps. Progressive cavities have seen some use as deliverers of "mother solution" (extremely viscous, high-concentration polymer solution) but have lacked use for pumping downhole due to the operational costs, complexity, and rigorous maintenance that requires long periods of downtime. Triplex plunger pumps are the current choice for operators of polymer floods. These pumps see shear degradation values up to 15% of the solution viscosity [13]. Attempted remedies for these issues include oversizing the plunger pump and slowing the RPM, creating a non-optimized and more expensive solution while still causing turbulent flow and degradation of the polymer solution.

Laboratory experiments at the University of Wyoming showed, on average, the Hydra-Cell T100K demonstrated a 1-5% degradation of polymer viscosity. Results also demonstrated no consistent trend between the percent decrease in viscosity and either the discharge pressure or the pump flow rate. The experimental system and piping did have a non-negligible impact on polymer solution viscosity reduction, suggesting that polymer degradation through the T100K is most likely even less than the measured 1-5% viscosity reduction. Overall, Wanner Engineering's Hydra-Cell T100K has demonstrated a marked improvement and decrease in polymer solution viscosity degradation over what is generally seen in oilfield projects (\approx 15%) [14].

2.1 Economics of Polymer Flooding

Polymer flooding costs range from USD \$3-\$12 per incremental barrel produced. The high range covers special polymers for high temperature/salinity conditions and can be improved when pilots are expanded to a commercial scale. However, polymer flooding can be very sensitive to project economics. Typically, these projects are first driven by capital expenditures, with operational expenses getting lumped into the "per incremental barrel" cost.

With chemical EOR costs typically being reported at an inclusive cost per incremental barrel of oil basis, long-term consequences of CAPEX decisions are unknowingly funneled into rising OPEX costs. For example, if a high shear triplex pump were purchased due to lower upfront costs, CAPEX would show up favorably on the balance sheet; however, over time, the OPEX costs would rise as more polymer is purchased to overcome the additional degradation and reduced mobility control of the polymer solution.

With Hydra-Cell pumps' lower degradation [14], significant savings can be realized through lower polymer utilization and higher cumulative production. Hydra-Cell pumps also do not require seals or packing and will often pay for themselves in just maintenance costs alone versus a triplex plunger pump (see Table 1).

Table 1: Hydra-Cell costs compared to typical plunger pumps.

Life Cycle Cost Analysis of Polymer Injection Pumps for EOR Total Costs: Acquisition and 3 Years of Operation

	Packed Plunger Pump #1	Packed Plunger Pump #2	Hydra-Cell T Series
Corrective Maintenance Cost (Break-down events. Includes labor @\$100 per hour, spare parts.)	\$44,940	\$33,000	\$6,441
Preventive Maintenance Cost (Includes labor @\$100 per hour, spare parts.)	\$24,816	\$17,196	\$12,582
Energy Cost (8,760 working hours per year @\$0.15 per KWh)	\$35,478	\$35,478	\$35,478
Acquisition Cost (Pump and driver skid)	\$84,950	\$65,764	\$76,302
Total Cost per Pump (3 years)	\$190,184	\$151,438	\$130,803
Hydra-Cell Saving by Pump	\$59,381	\$20,635	

3 Reservoir Engineering

Typical polymer flooding viscosity design is directed by mobility ratio, with resistance factor (i.e., injectivity and project economics) being the final design criteria for target viscosity and molecular weight of polymer to be used. This ensures a reasonable flow rate through the reservoir and injection pressures below fracture pressures. Pilot projects typically take up to three years to design and another two to four years to see a full field-scale development (Fig. 1).

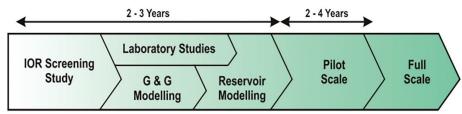


Figure 1: Typical timeline from screening to full-scale deployment (modified) [30].

It is imperative that the target viscosity is reached for the flood to be successful. Simulation and reservoir engineering often do not include shearing in surface facility equipment such as pumps. If the facilities shear/degrade polymer enough, it can drastically alter the profitability of the operation. As can be seen from Table 2, concentration and pounds of polymer per volume reservoir are significant economic drivers in these projects. The less shear degradation in a system, the lower the amount of bulk polymer needed.

Table 2: Polymer flooding summary in the United States [28].

	Sandstone Projects (273)	Carbonate Projects (55)
Polymer conc. (ppm)	50-3,700	50-1,000
Polymer used $\left(\frac{\text{lb.}}{\text{acre-ft.}}\right)$	19-150	12-56
Oil recovered $\left(\frac{\text{STB}}{\text{Ib. polymer injected}}\right)$	0-3.74	0-2.82
Recovery (% OOIP)	0-23	0-13

3.1 Simulation & Sensitivity Analysis

Sensitivity analyses were run in CMG's CMOST AI to see the effects that polymer molecular weight, assigned polymer viscosity, and polymer mixing function (polymer viscosity vs. concentration) had on the cumulative oil production on a selected simulation study. The study was run on CMG's template "stflu020.dat," a surfactant

polymer flood whose data and grid are based on well-published SPE papers [35] [11] [20]. The only modification made to the model was to keep injection rates constant. If viscosity is altered without constant injection parameters, lower viscosity simulations can artificially increase production from an increase of allowable injectant to increase poreflooded reservoir volumes.

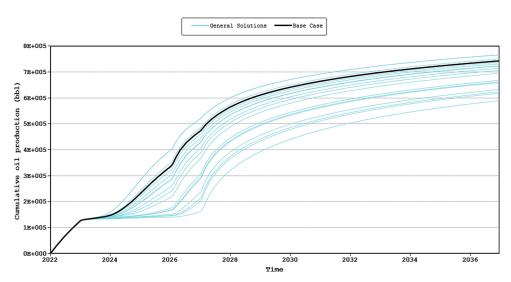


Figure 2: Sensitivity analysis of molecular weight, viscosity, and polymer mixing function on cumulative oil production.

Our results showed a decrease of up to 30% in cumulative oil production through varying the three parameters (Fig. 2), which confirmed the results in Sorbie's monograph on degrading polymer solutions and their negative effect on cumulative oil production (Fig. 3). This significant decrease can ultimately be the decider if a project is profitable or not.

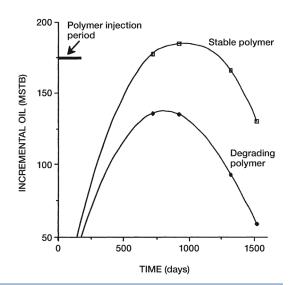


Figure 3: Incremental oil in 3-D field calculations [41].

4 Conclusions

Often overlooked, surface facility pumps are often culprits of large amounts of shear degradation in polymer slugs, which can lead to drastic decreases of up to 30% in cumulative oil production [41]. With low-shear pump technology such as the Wanner Hydra-Cell pumps, operators can extend the financial recovery of wells on polymer injection and see an increased rate of return.

Table 3: Key economic parameters for different EOR methods (from experience and confidential reports).

Method	Key Parameter	Typical Parameter Value	Key Parameter Cost (USD \$)
Gas (CO2) Utilization factor		2.4 - 11 mcf CO2/BBL (miscible)	\$1 - \$2/MMSCF natural
		5 – 12 mcf CO2/BBL (immiscible)	\$20 - \$30/MMSCF anthropogenic
		<20 mcf CO2/BBL (economic limit)	
Thermal	Steam oil ratio (SOR)	2 - 8 volume steam per unit oil volume	\$3 - \$8 per steam BBL
A/SP	Price per incremental BBL	All-inclusive cost per BBL	\$10 - \$15/BBL
Polymer	Price per incremental BBL	All-inclusive cost per BBL	\$3 - \$12/BBL

5 References

- [1] CMOST-AI, August 2017.
- [2] A. Aldhuwaihi, P. King, and A.H. Muggeridge. <u>Upscaling Polymer Flooding to Model Subgridblock Geological Heterogeneity and Compensate for Numerical Dispersion</u>. Dresden, Germany, April 2015.
- [3] A.M. AlSofi. The Use of Polymer Injectivity Data for the Estimation of Porous Media Longitudinal Dispersion. Saint Petersburg, Russia, April 2013.
- [4] A.M. AlSofi, M.J. Blunt, and A. AlKhatib. <u>The Decomposition of Volumetric Sweep Efficiency and Its Utility in EOR Simulations</u>. Dresden, Germany, April 2015.
- [5] V. Alvarado and E. Manrique. Enhanced oil recovery: field planning and development strategies. Gulf Professional Pub./Elsevier, Burlington, MA, 2010. OCLC: ocn430842982.
- [6] A. Behr, L. Olie, F. Visser, and B. Leonhardt. <u>Optimization of Polymer Flooding with a Tapered Concentration Slug</u>. Saint Petersburg, Russia, April 2013.
- [7] V. E. Botechia, M. G. Correia, and D. J. Schiozer. <u>A Model-Based Production Strategy Selection Considering Polymer Flooding in Heavy Oil Field Development</u>. In All Days, pages SPE–180838–MS, Port of Spain, Trinidad and Tobago, June 2016. SPE.
- [8] E. Braccalenti, P. Albonico, L. Romero-Zeron, V. Parasiliti Parracello, F. Masserano, and L. Del Gaudio. <u>Polymer Flooding Designing of a Pilot Test for Unusually High Salinity and Hardness Reservoir</u>. Saint Petersburg, Russia, April 2013.
- [9] Kjetil Brakstad and Christian Rosenkilde. Modelling <u>Viscosity and Mechanical Degradation of Polyacrylamide Solutions in Porous Media</u>. In All Days, pages SPE–179593–MS, Tulsa, Oklahoma, USA, April 2016. SPE.
- [10] E.J. Chapman, D. Mercer, G. Jerauld, R. Shields, K. Sorbie, D. Mogford, and A. Cable. <u>Polymer Flooding for EOR in the Schiehallion Field Porous Flow Rheological Studies of High Molecular Weight Polymers</u>. Dresden, Germany, April 2015.
- [11] D Chapotin. The Chateaurenard (France) Industrial Microemulsion Pilot Design and Performance. Page 13.
- [12] Eric Delamaide. <u>Polymer Flooding of Heavy Oil From Screening to Full-Field Extension</u>. In Day 3 Fri, September 26, 2014, page D031S021R002, Medell'in, Colombia, September 2014. SPE.
- [13] Wang Demin, Jiang Youlin, Wang Yan, Gong Xiaohong, and Wang Gang. <u>Viscous-Elastic Polymer Fluids Rheology</u> and Its Effect Upon Production Equipment. Page 8, 2004.
- [14] Evan P Egenolf and Erik Smith. Wanner Phase I Report, March 2022.
- [15] C. Fabbri, C. Romero, F. Aubertin, M. Nguyen, S. Hourcq, and G. Hamon. <u>Secondary Polymer Flooding in Extra-heavy Oil Core Experiments under Reservoir Conditions and Core Scale Simulation</u>. Saint Petersburg, Russia, April 2013.
- [16] Gerard Glasbergen, Diego Wever, Efraim Keijzer, and Rouhi Farajzadeh. <u>Injectivity Loss in Polymer Floods: Causes, Preventions and Mitigations</u>. In All Days, pages SPE–175383–MS, Mishref, Kuwait, October 2015. SPE. 5
- [17] Ming Han, Wentao Xiang, Jian Zhang, Wei Jiang, and Fujie Sun. <u>Application of EOR Technology by Means of Polymer Flooding in Bohai Oil Fields</u>. Page 6.

5 References

- [18] D.G. Hatzignatiou, H. Moradi, and A. Stavland. Experimental Investigation of Polymer Flow through Water- and Oilwet Berea Sandstone Core Samples (SPE-164844). London, UK, 2013.
- [19] R. E. Hincapie and L. Ganzer. <u>Assessment of Polymer Injectivity with Regards to Viscoelasticity: Lab Evaluations towards Better Field Operations</u>. In All Days, pages SPE–174346–MS, Madrid, Spain, June 2015. SPE.
- [20] C Huh, L H Landis, N K Maer Jr, P H McKinney, and N A Dougherty. <u>Simulation To Support Interpretation of the Loudon Surfactant Pilot Tests</u>. Page 16.
- [21] S. Jouenne, H. Chakibi, and D. Levitt. <u>Polymer Stability Following Successive Mechanical Degradation Events</u>. Dresden, Germany, April 2015.
- [22] Stephane Jouenne, J'er^ome Anfray, philippe Robert Cordelier, Khalid mateen, David Levitt, In'es Souilem, Philippe Marchal, C'ecile Lemaitre, Lionel Choplin, Jonathon Nesvik, and Thomas Waldman. <u>Degradation (or Lack Thereof) and Drag Reduction of HPAM Solutions During Transport in Turbulent Flow in Pipelines. Oil and Gas Facilities</u>, 4(01):80–92, February 2015.
- [23] W. Littmann. <u>Polymer flooding. Number 24 in Developments in petroleum science</u>. Elsevier; Distributors for the U.S. and Canada, Elsevier Science Pub. Co, Amsterdam; New York: New York, NY, U.S.A, 1988.
- [24] Mohammad Lotfollahi. Mechanistic Simulation of Polymer Injectivity in Field Tests. Page 28.
- [25] A. M. AlSofi and M. J. Blunt. <u>The Design and Optimization of Polymer Flooding Under Uncertainty</u>. Cambridge, UK, April 2011.
- [26] Eduardo Manrique, Mahmood Ahmadi, and Shirin Samani. <u>Historical and recent observations in polymer floods:</u>
 <u>An updated review.</u> CT&F Ciencia, Tecnolog´ıa y Futuro, 6(5):17–48, January 2017.
- [27] Eduardo Jose Manrique, Viviana Eugenia Muci, and Mariano E Gurfinkel. <u>EOR field experiences in carbonate reservoirs in the United States</u>. SPE Reservoir Evaluation & Engineering, 10(06):667–686, 2007. Publisher: OnePetro.
- [28] Eduardo Jose Manrique, Viviana Eugenia Muci, Mariano E Gurfinkel, and others. <u>EOR field experiences in carbonate reservoirs in the United States</u>. SPE Reservoir Evaluation & Engineering, 10(06):667–686, 2007. tex.publisher: Society of Petroleum Engineers.
- [29] Paiva Rojas Miguel, Zanetti Joanna, Zanetti Stefano, Stieben Alejandro, and Tidball Eduardo. <u>Fluid dynamics analysis and performance of polymer flow regulators for polymer flooding in multilayered reservoirs</u>. Journal of Petroleum Science and Engineering, 208:109680, January 2022.
- [30] Ganesan Nadeson, Nor Aidil B Anua, Ashok Singhal, Ramli B Ibrahim, and others. <u>Water-alternating-gas (WAG)</u> pilot implementation, a first EOR development project in Dulang field, offshore Peninsular Malaysia. In SPE Asia pacific oil and gas conference and exhibition, 2004. tex.organization: Society of Petroleum Engineers.
- [31] Oddbjørn Nødland,, Arild Lohne, Arne Stavland, and Aksel Hiorth. <u>An Investigation of Polymer Mechanical Degradation in Radial Well Geometry</u>. Transport in Porous Media, 128(1):1–27, May 2019.
- [32] Society of Petroleum Engineers, editor. <u>Petroleum resources management system</u>. Society of Petroleum Engineers, Richardson, Tex, revised June 2018 edition, 2018.

5 References

- [33] Christoph Puls, Torsten Clemens, Christoph Sledz, Rainer Kadnar, and Thomas Gumpenberger. <u>Mechanical Degradation of Polymers During Injection, Reservoir Propagation and Production</u> Field Test Results 8 TH Reservoir, Austria. In All Days, pages SPE–180144–MS, enna, Austria, May 2016. SPE.
- [34] D. Rousseau, I. Henaut, A. Dupas, P. Poulain, R. Tabary, J.F. Argillier, and T. Aubry. <u>Impact of Polymer Mechanical Degradation on Shear and Extensional Viscosities</u>. Saint Petersburg, Russia, April 2013.
- [35] Naji Saad, Gary A. Pope, and Kamy Sepehrnoori. <u>Simulation of Big Muddy Surfactant Pilot</u>. SPE Reservoir Engineering, 4(01):24–34, February 1989.
- [36] H Saboorian-Jooybari, M Dejam, Z Chen, and others. <u>Half-century of heavy oil polymer flooding from laboratory core floods to pilot tests and field applications</u>. In SPE Canada heavy oil technical conference, 2015. tex.organization: Society of Petroleum Engineers.
- [37] R. S. Seright. <u>How Much Polymer Should Be Injected During a Polymer Flood</u>? In All Days, pages SPE–179543–MS, Tulsa, Oklahoma, USA, April 2016. SPE.
- [38] Martin Sieberer, Karl Jamek, and Torsten Clemens. <u>Polymer Flooding Economics, from Pilot to Field Implementation at the Example of the 8 TH Reservoir, Austria</u>. In All Days, pages SPE–179603–MS, Tulsa, Oklahoma, USA, April 2016. SPE.
- [39] A. Skauge and I. Salmo. Relative Permeability Functions for Tertiary Polymer Flooding. Dresden. Germany, April 2015.
- [40] T. Skauge, O.A. Kvilhaug, and A. Skauge. <u>Influence of Polymer Structural Conformation and Phase Behaviour on In-situ Viscosity</u>. Dresden, Germany, April 2015.
- [41] K. S. Sorbie. Polymer-Improved Oil Recovery. Springer Netherlands, Dordrecht, 1991.

Wanner Engineering, Inc.

World Headquarters & Manufacturing

1204 Chestnut Avenue

Minneapolis, MN 55403 USA

Phone: 612-332-5681 • Fax: 612-332-6937

Toll-Free Fax (USA): 800-332-6812

Email: sales@wannereng.com

www.Hydra-Cell.com

Regional Office

207 US Highway 281

Wichita Falls, TX 76310 USA

Phone: 940-322-7111 Toll-Free: 800-234-1384

Email: sales@wannereng.com

www.Hydra-Cell.com

Latin American Office

Avenida Senador Vergueiro 608 - Centro São Bernardo do Campo/São Paulo, Brazil

CEP 09750-000

Phone: +55 (11) 99582-1969

Email: mmagoni@wannereng.com www.Hydra-Cell-Pumps.com.br

Wanner International, Ltd.

Hampshire - United Kingdom Phone: +44 (0) 1252 816847 Email: sales@wannerint.com www.Hydra-Cell.co.uk

Wanner Pumps, Ltd.

Kowloon - Hong Kong Phone: +852 3428 6534

Email: sales@wannerpumps.com www.WannerPumps.com

Shanghai - China

Phone: +86-21-6876 3700

Email: sales@wannerpumps.com www.WannerPumps.com