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1	 Introduction

Polymer flooding continues to be the dominant form of chemical-enhanced oil recovery. It is one of the few 
methods that has concrete proof of concept and economic advantage. Although these projects account for 
the most oil produced via chemical injection, there are many operational and design considerations that 
drastically affect field performance.

Besides emulsions and water quality issues, polymer degradation has the largest effect on the economics of 
these projects. Polymer quantity, viscosity, and injectivity drastically affect the CAPEX / OPEX expenses, 
cumulative production, and reserves in these projects.

This report is intended to organize past experiences, simulation results, literature review, and the technical 
understanding of the effects that pumps have on polymer solutions to characterize the extent of the 
benefits that low-shearing Hydra-Cell hydraulically actuated diaphragm pumps (manufactured by Wanner 
Engineering, Inc.) can have on polymer flooding projects through lower shear degradation.

Hydra-Cell model T100K, manufactured by Wanner 
Engineering, Inc., Minneapolis, Minnesota, USA.
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2	 Industry Review

Much of the science and literature pertaining to polymer degradation is on porous media and chemical 
degradation, with some limited focus on surface facilities (pumps, chokes, piping, etc.). Pumps are largely 
ignored in these projects, even though the pump is one of the first pieces of equipment the polymer slug comes 
into contact with and is one of the first points of significant shear degradation of the polymer solution.

Mechanical degradation can result in significant viscosity loss due to the irreversible scission of polymer 
macromolecules. It can occur in the injection facilities (turbulent flow), before the polymer solution reaches 
the formation, or in the near-wellbore area (laminar flow) [34]. Scissoring occurs when a polymer solution 
is exposed to high shear conditions, such as during the mixing of polymer solutions or the conveyance of a 
polymer solution in pumps and chokes [23].

What has typically been done to mitigate the shear degradation in surface pumps has been to use progressive 
cavity and triplex plunger pumps. Progressive cavities have seen some use as deliverers of “mother solution” 
(extremely viscous, high-concentration polymer solution) but have lacked use for pumping downhole due to 
the operational costs, complexity, and rigorous maintenance that requires long periods of downtime.
Triplex plunger pumps are the current choice for operators of polymer floods. These pumps see shear 
degradation values up to 15% of the solution viscosity [13]. Attempted remedies for these issues include over-
sizing the plunger pump and slowing the RPM, creating a non-optimized and more expensive solution while 
still causing turbulent flow and degradation of the polymer solution.

Laboratory experiments at the University of Wyoming showed, on average, the Hydra-Cell T100K 
demonstrated a 1-5% degradation of polymer viscosity. Results also demonstrated no consistent trend between 
the percent decrease in viscosity and either the discharge pressure or the pump flow rate. The experimental 
system and piping did have a non-negligible impact on polymer solution viscosity reduction, suggesting that 
polymer degradation through the T100K is most likely even less than the measured 1-5% viscosity reduction. 
Overall, Wanner Engineering’s Hydra-Cell T100K has demonstrated a marked improvement and decrease in 
polymer solution viscosity degradation over what is generally seen in oilfield projects (≈15%) [14].
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2.1	Economics of Polymer Flooding

Polymer flooding costs range from USD $3-$12 per incremental barrel produced. The high range covers 
special polymers for high temperature/salinity conditions and can be improved when pilots are expanded to 
a commercial scale. However, polymer flooding can be very sensitive to project economics. Typically, these 
projects are first driven by capital expenditures, with operational expenses getting lumped into the “per 
incremental barrel” cost.

With chemical EOR costs typically being reported at an inclusive cost per incremental barrel of oil basis, long-
term consequences of CAPEX decisions are unknowingly funneled into rising OPEX costs. For example, if a 
high shear triplex pump were purchased due to lower upfront costs, CAPEX would show up favorably on the 
balance sheet; however, over time, the OPEX costs would rise as more polymer is purchased to overcome the 
additional degradation and reduced mobility control of the polymer solution.

With Hydra-Cell pumps’ lower degradation [14], significant savings can be realized through lower polymer 
utilization and higher cumulative production. Hydra-Cell pumps also do not require seals or packing and will 
often pay for themselves in just maintenance costs alone versus a triplex plunger pump (see Table 1).

Table 1: Hydra-Cell costs compared to typical plunger pumps.

Life Cycle Cost Analysis of Polymer Injection Pumps for EOR 
Total Costs: Acquisition and 3 Years of Operation

Packed Plunger 
Pump #1

Packed Plunger 
Pump #2

Hydra-Cell  
T Series

 Corrective Maintenance Cost
 (Break-down events. Includes labor @$100 per hour, spare parts.)	 $44,940	 $33,000	 $6,441

 Preventive Maintenance Cost
 (Includes labor @$100 per hour, spare parts.)	 $24,816	 $17,196	 $12,582

 Energy Cost
 (8,760 working hours per year @$0.15 per KWh)	 $35,478	 $35,478	 $35,478

 Acquisition Cost
 (Pump and driver skid)	 $84,950	 $65,764	 $76,302

 Total Cost per Pump (3 years) 	 $190,184	 $151,438	 $130,803

 Hydra-Cell Saving by Pump 	 $59,381	 $20,635
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3	 Reservoir Engineering

Typical polymer flooding viscosity design is directed by mobility ratio, with resistance factor (i.e., injectivity 
and project economics) being the final design criteria for target viscosity and molecular weight of polymer 
to be used. This ensures a reasonable flow rate through the reservoir and injection pressures below fracture 
pressures. Pilot projects typically take up to three years to design and another two to four years to see a full 
field-scale development (Fig. 1).

It is imperative that the target viscosity is reached for the flood to be successful. Simulation and reservoir 
engineering often do not include shearing in surface facility equipment such as pumps. If the facilities shear/
degrade polymer enough, it can drastically alter the profitability of the operation. As can be seen from Table 2, 
concentration and pounds of polymer per volume reservoir are significant economic drivers in these projects. 
The less shear degradation in a system, the lower the amount of bulk polymer needed.

Figure 1: Typical timeline from screening to full-scale deployment (modified) [30].

Table 2: Polymer flooding summary in the United States [28].

		  Sandstone Projects (273)	 Carbonate Projects (55)

	Polymer conc. (ppm)	 50-3,700	 50-1,000

	Polymer used (        )	 19-150	 12-56

	Oil recovered (                   )	 0-3.74	 0-2.82

	Recovery (% OOIP)	 0-23	 0-13

lb.
acre–ft.

STB
lb. polymer injected
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3.1	Simulation & Sensitivity Analysis

Sensitivity analyses were run in CMG’s CMOST AI to see the effects that polymer molecular weight, assigned 
polymer viscosity, and polymer mixing function (polymer viscosity vs. concentration) had on the cumulative 
oil production on a selected simulation study. The study was run on CMG’s template “stflu020.dat,” a surfactant 
polymer flood whose 
data and grid are based 
on well-published SPE 
papers [35] [11] [20]. The 
only modification made 
to the model was to keep 
injection rates constant. 
If viscosity is altered 
without constant injection 
parameters, lower 
viscosity simulations 
can artificially increase 
production from an 
increase of allowable 
injectant to increase pore-
flooded reservoir volumes.

Figure 3: Incremental oil in 3-D field calculations [41].

Figure 2: Sensitivity analysis of molecular weight, viscosity, and  
polymer mixing function on cumulative oil production.

Our results showed a decrease of up to 30% in cumulative 
oil production through varying the three parameters (Fig. 
2), which confirmed the results in Sorbie’s monograph on 
degrading polymer solutions and their negative effect on 
cumulative oil production (Fig. 3). This significant decrease 
can ultimately be the decider if a project is profitable or not.
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4	 Conclusions

Often overlooked, surface facility pumps are often culprits of large amounts of shear degradation in polymer 
slugs, which can lead to drastic decreases of up to 30% in cumulative oil production [41]. With low-shear 
pump technology such as the Wanner Hydra-Cell pumps, operators can extend the financial recovery of wells 
on polymer injection and see an increased rate of return.

Method	 Key Parameter	 Typical Parameter Value	 Key Parameter Cost (USD $)
Gas (CO2)	 Utilization factor	 2.4 – 11 mcf CO2/BBL (miscible)	 $1 - $2/MMSCF natural
		  5 – 12 mcf CO2/BBL (immiscible)	 $20 - $30/MMSCF anthropogenic
		  <20 mcf CO2/BBL (economic limit)
Thermal	 Steam oil ratio (SOR)	 2 – 8 volume steam per unit oil volume	 $3 - $8 per steam BBL
A/SP	 Price per incremental BBL	 All-inclusive cost per BBL	 $10 - $15/BBL
Polymer	 Price per incremental BBL	 All-inclusive cost per BBL	 $3 - $12/BBL

Table 3: Key economic parameters for different EOR methods  
(from experience and confidential reports).
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