

Bombas Fiables para Procesamiento de Petróleo y Gas sin Fuga o Mantenimiento de Sellos y Empaquetaduras

Alta presión y Mezcla • Transferencia • Pulverización • Medición y Dosificación

Bombas compactas y sin sellos para una operación fiable y una larga vida útil

Con más de 40 años de experiencia al servicio de la industria, incluyendo a muchas de las principales empresas en el mundo, las bombas Hydra-Cell tienen un rendimiento probado para uso continuo en una amplia gama de aplicaciones de petróleo y gas.

- Puede bombear fluidos corrosivos y abrasivos, incluso a altas temperaturas.
- Capaz de funcionar en seco sin sufrir daños (ni mantenimiento adicional) a la bomba en caso de accidente o error del operador.
- Minimiza el mantenimiento porque no hay sellos, empaquetaduras, o juntas que tengan fugas o se deba reemplazar.

Aplicaciones de Producción y Transporte de Campo

- · Inyección de Glicol Caliente
- · Inyección, Eliminación y Transferencia de Agua Producida
- · Transferencia e Inyección de Condensado
- Servicio Sulfuroso
- Inyección de Productos Químicos

Aplicaciones de Refinería

- · Inyección Catalítica
- Muestreo de Petróleo Crudo
- Agua a Alta Presión
- · Lavado con Soda Cáustica
- Inyección de Gas Sulfuroso
- Control de Emisiones
- Bombeo de Lodos para Eliminación/ Neutralización Ácida de SO2

"Antes de que instaláramos nuestra bomba Hydra-Cell, estábamos usando una bomba de émbolo. Y, cada vez que operas una bomba de émbolo tendrás algo de fuga en la empaquetadura. a la velocidad que necesitábamos para correrlas, quemaban empaquetaduras con bastante regularidad. Así que reemplazamos nuestras antiguas bombas de émbolo por las bombas Hydra-Cell D04 y desde entonces no hemos tenido ningún problema. Su durabilidad y diseño sin sello han ayudado a reducir los gastos de mantenimiento".

Denis Boucher Capataz de Producción Trident Exploration Group Inc.

Bombas estándar Hydra-Cell, Bombas Dosificadoras Hydra-Cell y Bombas Serie T80 Hydra-Cell

Las bombas de desplazamiento positivo Hydra-Cell están disponibles en 16 modelos de bombas que cubren una amplia gama de flujos y presiones.

Ocho modelos Hydra-Cell estándar son ideales para transferencia, pulverización, e inyección y mezclado a presión.

Seis modelos de bombas de medición son ideales para medición y dosificación, pulverización, e inyección y mezclado a presión.

Dos bombas de alta presión serie T80 Hydra-Cell.

Las bombas Hydra-Cell se utilizan para muchas aplicaciones de procesamiento de petróleo y gas.

Offshore (Inyección de Químicos y Ósmosis Inversa)

Extracción de Gas (Reinyección de Agua, Desaguado de Pozos y Transferencia NGL)

Procesamiento y Distribución de Gas (Inyección y Odorización de Glicol)

Refinación de Petróleo (Vapor, Separación, Inyección de Aditivos, Refrigeración de Pila y Medición de Químicos)

Bombas de Jet (Presurización de Fluidos de Potencia)

Pruebas de Presión (Pruebas de Tubos y Pozo)

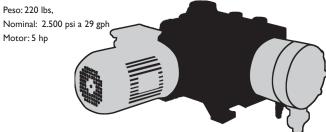
Extracción de Petróleo (Simulación de Pozo, Reinyección de Agua, Inyección de Químicos)

Petróleo Crudo (Transferencia y Muestreo)

Químicos y Líquidos Bombeados Típicos	Desafíos en Bombeo	La Ventaja de Hydra-Cell
Agua Producida y Agua Ácida (Inyección, Eliminación, Transferencia)	Corrosivo - puede contener H ₂ S, sal, CO ₂ , además de otras impurezas que forman soluciones ácidas que pueden dañar la bomba.	 El diseño sin sello no proporciona ninguna vía de fuga y maneja fluidos corrosivos. Hay disponibles materiales del cabezal dosificador resistentes a la corrosión .
(inyection, cilinination, it arisierentia)	Abrasivo - el agua contiene arena y otros contaminantes (p. ej.) bario, cadmio, azufre, cromo, cobre, hierro, plomo, níquel, plata, zinc.	 El diseño sin sello y las válvulas de retención de disco horizontales con muelle permiten que líquidos con partículas de hasta 800 micras (dependiendo del modelo de la bomba) sean bombeados de forma fiable y sin daños en la bomba. No hay juntas dinámicas para desgastar.
	El gas H_2S puede no estar totalmente contenido por la empaquetadura o sellos.	 No hay juntas, empaquetaduras o sellos para fugas de gas. La cámara de la bomba sin sello ofrece 100% de contención.
Trietilenglicol (TEG) Caliente	No lubricante - requiere un tren de engranajes o depósito interno con problemas de mantenimiento adicionales.	La acción de bombeo no requiere lubricación.
Dietilenglicol (DEG)	Maneja la alta temperatura del líquido bombeado.	No hay juntas dinámicas a dañar.
(Secado de Gas)	Controlabilidad de TEG/DEG inyectado.	 Caudal directamente proporcional a la velocidad de la bomba. Rango ajustable de velocidad del eje desde 10 hasta 1.800 rpm (1.200 rpm para algunos modelos).
Metanol (Buena Prevención de Formación de Hielo)	No lubricante, especialmente bombeando a presión.	La acción de bombeo no requiere lubricación.
Líquidos de Gas Natural (Mezclas de Metano, Propano, Etano)	No lubricante - requiere un tren de engranajes o depósito interno con problemas de mantenimiento adicionales.	La acción de bombeo no requiere lubricación.
Aminas	Difícil de contener cualquier H ₂ S saturados en una amina.	La cámara de la bomba sin sello ofrece 100% de contención.
(Monoetanolamina, Dietanolamina, Metildietanolamina, Diglicolamina)	El control del caudal debe ser sensible y preciso.	 Utiliza control de velocidad para una mayor precisión Excede criterios de desempeño API 675 para la linealidad (relación velocidad/caudal).
Cáusticos (Hidróxido de Sodio, Hidróxido de Potasio)	Tienden a cristalizar en frío o en contacto con el aire, formando sólidos que pueden dañar los sellos mecánicos y otros componentes de la bomba que requieran una película lubricante.	El diseño sin sello significa que no hay retenes rotatorios para gastar o reemplazar, evitando la contaminación por aire y humedad. Las válvulas de retención de disco horizontales con muelle permiten que líquidos con partículas de hasta 800 micras (dependiendo del modelo de la bomba) sean bombeados de forma fiable y sin daños en la bomba.
Ácidos (Sulfúrico, Clorhídrico, Nítrico)	Corrosivos – pueden dañar la bomba.	 El diseño sin sello no proporciona ninguna vía de fuga y maneja fluidos corrosivos. Hay disponibles materiales del cabezal dosificador resistentes a la corrosión .
	Tienden a cristalizar en frío o en contacto con el aire, formando sólidos que pueden dañar los sellos mecánicos y otros componentes de la bomba que requieran una película lubricante.	El diseño sin sello y las válvulas de retención de disco horizontales con muelle permiten que líquidos con partículas de hasta 800 micras (dependiendo del modelo de la bomba) sean bombeados de forma fiable y sin daños en la bomba.
Condensados (Campo, Arrendamiento)	No lubricante - requiere un tren de engranajes o depósito interno con problemas de mantenimiento adicionales.	La acción de bombeo no requiere lubricación.
	Deben estar 100% contenidos para cumplir con la legislación sobre emisiones de COV.	No hay juntas, empaquetaduras o sellos para fugas de gas. La cámara de la bomba sin sello ofrece 100% de contención.
Polímeros (Simulación de Pozo)	Estructuras de gel sensibles al cizallamiento que se pueden dividir fácilmente.	 Proporciona acción de bombeo de baja cizalladura y caudal prácticamente sin pulsaciones que protege a los polímeros.
,	Dificultad en el bombeo de fluidos de alta viscosidad.	La acción de bombeo de baja cizalladura también maneja fluidos de mayor viscosidad.
	Abrasivo – contains ceniza de sosa.	El diseño sin sello y las válvulas de retención de disco horizontales con muelle permiten que líquidos con partículas de hasta 800 micras (dependiendo del modelo de la bomba) sean bombeados de forma fiable y sin daños en la bomba.
	El control del caudal debe ser sensible y preciso.	 Utiliza control de velocidad para una mayor precisión Excede criterios de desempeño API 675 para la linealidad (relación velocidad/caudal).
Petróleo Crudo (Transferencia, Muestreo)	El rango de viscosidades hace que sea difícil de bombear.	El diseño sin sello y la acción de bombeo de baja cizalladura permiten la manipulación de líquidos con viscosidades desde 0,01 a 5.000 cps o más, y de líquidos que contienen una mezcla de viscosidades.

Menor Inversión Inicial y Menores Costos de Energía

Utiliza motores de menos cv


 Aunque ambas bombas dosificadoras tienen la misma capacidad de presión, la más ligera y compacta Hydra-Cell tiene un mayor caudal nominal, a la vez que utiliza motores más pequeños. Esto significa Hydra-Cell ahorra aproximadamente 30% a 55% en los costos iniciales.

Bomba dosificadora Hydra-

Peso: 51 libras. Nominal: 2.500 psi a 35 gph Motor: I-I/2 hp

Bomba de dosificación convencional
Peso: 220 lbs

Pequeña huella para ahorrar

- Su pequeña huella dimensional puede significar hasta el 30% menos de costo inicial en comparación con otras bombas.
- Su diseño de ahorro de espacio crea una huella más pequeña para un uso más eficiente del espacio de planta.
- Más fácil de acceder para revisión o mantenimiento de rutina.

Bombas mostradas a escala

Esta bomba Hydra-Cell mostrada a escala tiene la misma capacidad de caudal y presión nominal que este sistema de bomba dosificadora triplex convencional.

Bajo consumo de energía - Eficiencia energética de 85% a 90%

- El menor requerimiento de potencia de la bomba Hydra-Cell logra el mismo rendimiento, pero con una mayor eficiencia energética y menor consumo de energía.
- Las bombas de desplazamiento positivo Hydra-Cell muestran un importante ahorro energético en comparación con las bombas helicoidales y bombas centrífugas multietapa.

El cabezal de líquido de múltiples diafragmas de Hydra-Cell también permite que se utilice un motor menos caro y ahorrador de energía.

En comparación con bombas centrífugas multietapa para fluido bombeado a 290 psi.

Caudal (pies³/hr)	Energía Utilizada (kW)		Ahorro de	Ahorros Potenciales	
	Centrífuga	Hydra-Cell	Energía	Anuales*	
21	1,54	0,50	67%	\$250	
53	2,0	1,44	28%	\$134	

En comparación con bombas centrífugas multietapa para fluido bombeado a 580 psi.

Caudal (pies³/hr)	Energía Utilizada (kW)		Ahorro de	Ahorros Potenciales	
	Centrífuga	Hydra-Cell	Energía	Anuales*	
148	9,34	6,10	35%	\$778	
268	15,40	11,00	28%	1.056	

* En base a bombas funcionando 2.000 horas / año en EE.UU. promedio de $12 \/ell/$ kWh.

"Hemos tenido nuestra bomba durante tres años - cuatro años, este otoño, y ha sido genial. Hay muy poco mantenimiento y es muy rentable de operar."

Pat Hollman Operador Principal Macklin Facility • Husky Energy

Bombea Abrasivos y Opera en Seco Sin Daños

Las válvulas de retención horizontales de Hydra-Cell operan en un flujo de líquido horizontal y manejarán abrasivos y partículas sin obstrucción o daño a la bomba.

Maneja abrasivos y partículas

- El diseño sin sello y las válvulas de retención de disco horizontal a muelle proporcionan un manejo superior de abrasivos y de partículas.
- Bombeo eficiente de líquidos con partículas sólidas tales como suspensiones de cal y agua ácida conteniendo arena. Puede manejar relleno abrasivos y partículas de hasta 800 micras de tamaño (según el modelo de la bomba) y hasta el 9 de dureza en la escala de Mohs.

Opera en seco sin daños

 Diafragmas hidráulicamente equilibrados con tecnología Kel-Cell® permiten a las bombas Hydra-Cell correr en seco o en una línea de succión o cierre de válvula bloqueados sin daños.

Maneja fluidos de viscosidad baja a alta

- Bombea líquidos viscosos así como no viscosos hasta 5.000 cps (o más, dependiendo del modelo de bomba) en todo el rango de presión.
- Suacción de bombeo de baja cizalladura hace a Hydra-Cell ideal para bombeo y protección de polímeros sensibles al cizallamiento.
- · Líquidos no lubricantes pueden ser bombeados de forma fiable.

Menor mantenimiento y gestión de la filtración

- No hay sellos mecánicos o tolerancias estrechas que necesiten protección por filtración fina.
- Bombea partículas y abrasivos de hasta 800 micras de tamaño (según el modelo de la bomba), lo cual puede eliminar la necesidad de filtración fina.
- Puede bombear líquidos con hasta 40% de sólidos no disueltos, dependiendo de la distribución de partículas.
- No se ve afectado por fallas en filtración, reduciendo las costosas reparaciones de bombas.

"La longevidad de la bomba es lo que la hace una gran herramienta. Con la Hydra-Cell, simplemente no tenemos ninguno de los problemas de empaquetaduras o con fugas que tienen las bombas más normales".

> Trevor Arcilla Operador de Campo Talisman Energy

Diseño de Bomba Fiable para un Bajo Mantenimiento

Sin sellos ni empaquetaduras no hay fugas, desgaste ni reemplazo, y no produce emisiones nocivas

- Como no hay juntas dinámicas que se desgasten o se deban sustituir, las bombas Hydra-Cell necesitan poco mantenimiento y operarán en forma fiable en servicio continuo a alta presión.
- Los líquidos están 100% sellados de la atmósfera, y no hay vía de fuga de vapores tóxicos.
- Contención de Compuestos Orgánicos Volátiles (COV) y gases potencialmente dañinos tales como H₂S.
- No hay tolerancias ajustadas que podrían ser susceptibles a la corrosión o daños por partículas sólidas.
- No hay esa caída en el rendimiento común en las bombas selladas al desgastarse los sellos.

Servicio continuo y larga vida útil

- Un diseño para todas las aplicaciones reduce al mínimo la necesidad de bombas de reserva y repuestos, optimizando el entrenamiento y experiencia de servicio y reduce el tamaño y gastos del inventario.
- Por lo general corre hasta 6.000 horas entre cambios de aceite lubricante (en comparación con las 1.500 horas recomendadas por muchos fabricantes de bombas de pistón).

Diseño de cabeza de bomba simple

- Los materiales de la cabeza de líquido se pueden cambiar fácilmente.
- permitiendo que la Hydra-Cell sea utilizada por muchos productos químicos y líquidos diferentes bombeados.
- Mantenimiento mínimo.
- Bajo costo de repuestos.

Adaptable a muchas aplicaciones

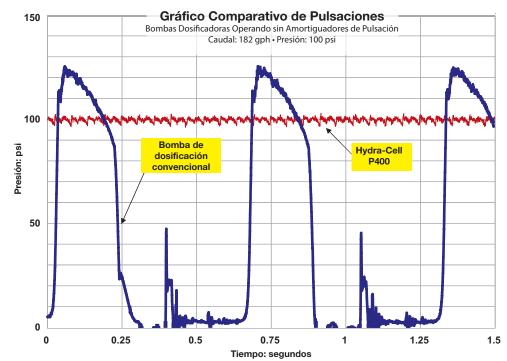
- Un diseño Hydra-Cell sin sello con 16 modelos (8 estándar, 6 dosificadores; 2 de alta presión) cubre una amplia gama de caudales y presiones de operación.
- Puede ser equipado con bridas ANSI, SAE o DIN, soportes de motor IEC o NEMA, o proporcionado con certificación ATEX para adaptarse a aplicaciones específicas o cumplir con estándares internacionales.
- Historial probado de sustitución de diferentes tecnologías de bombeo con un mejor manejo de abrasivos, menos mantenimiento, y otros beneficios (detallado en las páginas 8-9).

Medición y Dosificación Precisa con Flujo Lineal sin Pulsación

Control electrónico preciso de caudal

- En comparación con las bombas que se basan en el ajuste de carrera manual o costosos actuadores para cambiar el caudal, las bombas dosificadoras Hydra-Cell utilizan el control de velocidad para una mayor precisión en todo el rango de regulación.
- · Pueden ser equipadas con control de flujo electrónico de estado sólido en el que el volumen por cada movimiento es un valor constante y conocido.

• El caudal electrónico también ofrece una fácil calibración de


la velocidad de alimentación deseada y un cambio de caudal casi instantáneo (0 a rpm máxima en 0,3 segundos).

Caudal prácticamente libre de impulsos

- El diseño de diafragma múltiple minimiza pulsaciones, eliminando la necesidad de costosos amortiguadores de pulsaciones para la mayoría de modelos Hydra-Cell.
- Reduce la tensión de la tubería.
- Mejora la seguridad de operación.
- Reduce al mínimo el mantenimiento.
- Reduce las pérdidas de aceleración/fricción en la línea de succión.
- · Proporciona una dosificación precisa con flujo lineal y

Resultados típicos para el rango de velocidad recomendado


· Reduce los costos de adquisición del sistema.

Versatilidad para Aplicaciones de Campo y Refinería Variedad de conexiones de tubería

Variedad de materiales del cabezal dosificador

Hay disponible una selección de materiales del cabezal dosificador para satisfacer el fluido bombeado:

- · Hastelloy C
- Duplex Alloy 2205 SST
- 316L SST
- Latón
- · Hierro fundido · Polipropileno

Conexiones de brida ANSI

Variedad de materiales de membrana

Hay diafragmas disponibles en una va operar en un amplio rango de condirendimiento:

- EPDM
- FKM
- PTFE
- Neopreno
- Buna-N
- Aflas

Conexiones roscadas NPT o PBCT

Bombas de alta presión Hydra-Cell para una operación económica y ambientalmente racional

La Hydra-Cell Modelo T8030 fue finalista en los premios "Innovación de Producto" de Bombas y Sistemas, y la Serie T80 ganó un "Premio de Nuevas Tecnologías" de la Offshore Technology Conference.

- El diseño sin sello separa el extremo de alimentación del extremo hidráulico del proceso, eliminando fugas, peligros y gastos asociados con sellos y empaquetaduras
- · Los bajos requerimientos de NPSH permiten una operación con una condición de vacío en la succión - no es necesaria una presión positiva en la entrada
- · Puede operar con una línea de aspiración cerrada o bloqueada y marchar en seco indefinidamente sin daños, eliminando tiempos muertos y costos de reparación
- Su diseño de diafragma exclusivo maneja más abrasivos con menos desgaste que bombas de engranaje, helicoidales o de émbolo

- Diafragmas hidráulicamente equilibrados para manejar altas presiones con bajo estrés
- Proporciona flujo lineal de bajo pulso debido a su diseño de diafragma múltiple.
- Menores costos de energía que las bombas centrífugas y otras tecnologías de bombeo.
- · Construcción robusta para una larga vida útil con mínimo mantenimiento
- Su diseño compacto y eje de dos extremos ofrece una variedad de opciones de instalación
- · Las bombas Hydra-Cell Serie T80 pueden ser configuradas para satisfacer las normas API 674 - consulte con la fábrica para

Caudales: 45 gpm (1.543 bpd)

Presión Máxima de Entrada: 500 psi Presión de Descarga Máxima: 3000 psi

Rango de Temperatura de Operación: 40°F a 180°F

Opciones de Material del Colector Níquel Aluminio Bronce

(NAB)

Caudales:

Presión Máxima de Entrada: Presión de Descarga Máxima:

Rango de Temperatura de Operación: 40°F a 180°F

Material del Colector Níquel Aluminio Bronce (NAB)

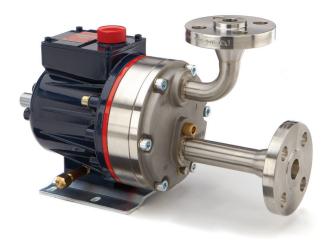
Acero inoxidable 316L

Para especificaciones completas, consulte los boletines de productos Hydra-Cell T8030 y T8045.

26 gpm (891 bpd)

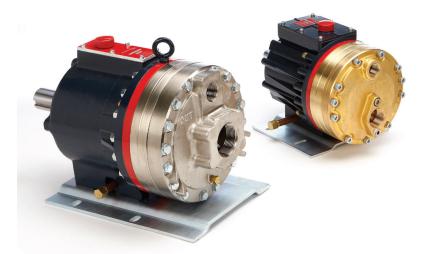
500 psi

5000 psi


Hydra-Cell[®] Ventajas de Rendimiento en Comparación con Otros Tipos de Bombas

Las bombas de émbolo (imagen) tienen mantenimiento, desgaste, lubricación, y problemas ambientales que las bombas Hydra-Cell evitan debido al diseño sin sello y de diafragma múltiple de Hydra-Cell.

evitan debido di diseno sin sello y de diafragma multiple de Hydra-Cell.						
Desventajas de la Bomba de Émbolo/Pistón:	Ventajas de Hydra-Cell:					
 La empaquetadura requiere ajustes frecuentes y luego reemplazo a medida que se desgasta. 	El diseño sin sello no utiliza empaquetadura, lo que reduce los costes de inactividad y mantenimiento.					
 La empaquetadura requiere filtración para hacer la lubricación creando problemas de mantenimiento, contención, eliminación, seguridad y limpieza con sus costos asociados 	Sin empaquetadura significa que no hay contención secundaria, ni problemas de descontaminación o eliminación, mejor seguridad y menores costes de mantenimiento.					
 La empaquetadura permite emisiones que requieren alternativas costosas "sin vapor" o sistemas de recuperación de vapores. 	El diseño sin sello elimina las emisiones y las costosas multas asociadas.					
 La empaquetadura causa desgaste del émbolo, agravado por medios abrasivos; émbolo, caja de relleno, y empaquetadura deben ser compatibles con el producto que se bombea. 	El diseño de diafragma permite bombear de fluidos abrasivos y corrosivos sin preocuparse por el desgaste, compatibilidad o sustitución de empaquetadura o émbolo/ pistón.					
• Puede requerir sistemas de lubricación externos a un costo adicional de hasta \$ 3.000 - otro factor de mantenimiento y	No necesita lubricación, lo que resulta en menos mantenimiento y un menor coste de gastos de propiedad.					
Desventajas de Bombas de Dosificación Convencionales	Ventajas de Hydra-Cell:					
 Usa ajustadores de carrera manuales o costosos actuadores para controlar el caudal, lo que puede resultar en imprecisiones de bombeo, error del operador, y una mayor probabilidad de fuga. 	 Hydra-Cell emplea un control electrónico de caudal de Unidad de Frecuencia Variable (VFD) opcional para una mayor precisión y capacidad de repetición, reduciendo la posibilidad de error del operador, y eliminando una potencial vía de fuga. 					
 Requiere costosos amortiguadores de pulsación para minimizar las pulsaciones. 	El diseño de diafragma múltiple proporciona un flujo prácticamente libre de pulsos, de modo que no se requieren costosos amortiguadores de pulsación.					
 Sólo pueden ofrecer diafragmas PTFE, los cuales requieren reemplazo frecuente debido al estrés y la mala memoria elastomérica. 	Disponible con una amplia variedad de materiales de diafragma elastoméricos y rentables.					
 Huella grande para alcanzar el flujo y presión máximos requeridos. 	Cumple con los mismos requisitos de caudal y presión con una huella mucho más pequeña, ahorrando espacio y costes.					
Se necesitan diferentes tamaños de émbolo y cabezal dosificador para adaptarse a los cambios en presiones de operación.	Opera en un amplio rango de presiones sin cambios en el tamaño del émbolo o cabezal dosificador.					
• El engranaje integral (necesario para evitar la contaminación cruzada del aceite de accionamiento) es difícil y caro de mantener.	 La simplicidad del diseño significa menos partes y menos costos de mantenimiento. Una caja de engranajes independiente evita la contaminación cruzada del aceite de accionamiento. 					



En comparación con otras bombas, Hydra-Cell requiere un mantenimiento mínimo para el procesamiento de petróleo y gas. Hydra-Cell no tiene empaquetadura o sellos que tengan fugas o necesiten ser sustituidos, y no tienen engranajes internos que se desgasten.

Ventajas de Hydra-Cell:
 El diseño sin sellos de Hydra-Cell significa que no hay sellos o empaquetaduras con fugas o que necesiten reemplazo.
 Cámara de bombeo sin sello y válvulas de retención de disco horizontal de muelle pueden bombear sólidos, rellenos abrasivos y partículas durante la manipulación de líquidos gruesos o delgados.
 Opera a velocidades baja a alta y a presiones mayores con mayor eficiencia volumétrica.
 No hay engranajes internos a desgastar, de modo que hay menos mantenimiento y sustitución de piezas de repuesto. Precisión y eficiencia son más estables.
No hay cojinetes en el fluido bombeado.
• Diseño hidráulicamente equilibrado para que no haya cargas
radiales.
Ventajas de Hydra-Cell:
Ventajas de Hydra-Cell: • El diseño sin sellos de Hydra-Cell significa que no hay sellos
Ventajas de Hydra-Cell: • El diseño sin sellos de Hydra-Cell significa que no hay sellos o empaquetaduras con fugas o que necesiten reemplazo. • Cámara de bombeo sin sello y válvulas de retención de disco horizontal de muelle pueden bombear sólidos,
Ventajas de Hydra-Cell: El diseño sin sellos de Hydra-Cell significa que no hay sellos o empaquetaduras con fugas o que necesiten reemplazo. Cámara de bombeo sin sello y válvulas de retención de disco horizontal de muelle pueden bombear sólidos, rellenos abrasivos y partículas. No hay engranajes internos a desgastar, de modo que hay
Ventajas de Hydra-Cell: • El diseño sin sellos de Hydra-Cell significa que no hay sellos o empaquetaduras con fugas o que necesiten reemplazo. • Cámara de bombeo sin sello y válvulas de retención de disco horizontal de muelle pueden bombear sólidos, rellenos abrasivos y partículas. • No hay engranajes internos a desgastar, de modo que hay menos mantenimiento y sustitución de piezas de repuesto.
 Ventajas de Hydra-Cell: El diseño sin sellos de Hydra-Cell significa que no hay sellos o empaquetaduras con fugas o que necesiten reemplazo. Cámara de bombeo sin sello y válvulas de retención de disco horizontal de muelle pueden bombear sólidos, rellenos abrasivos y partículas. No hay engranajes internos a desgastar, de modo que hay menos mantenimiento y sustitución de piezas de repuesto. No hay casquillos/rodamientos en el fluido bombeado.

Las Bombas de Diafragma de Desplazamiento Positivo Hydra-Cell son ideales para la

Manipulación de Abrasivos y Partículas

- Versatilidad incomparable para una amplia gama de aplicaciones de bombeo requeridas en el procesamiento de petróleo y gas.
- Cuenta con un diseño sin sello y válvulas de retención de disco horizontal que permiten a la bomba manejar abrasivos y partículas que podrían dañar o destruir otros tipos de bombas.
- · Diseño simple y compacto que reduce la inversión inicial y disminuye los costos de mantenimiento.
- · Variedad de modelos que pueden operar con caudales muy bajos a muy altos y presiones de desarga de hasta 5.000 psi.
- Disponible en una amplia gama de materiales de construcción de cabeza de bomba y materiales de diafragma.
- Variedad de opciones y accesorios para optimizar el rendimiento.

En su trabajo en todo el sur y centro de California, Steve Burks de Oil Field Solutions ha encontrado que es difícil a veces conseguir que los clientes cambien su forma de operar.

"Pero una vez que consigo que usen una Hydra-Cell y ven la diferencia que puede hacer en la reducción de problemas de mantenimiento y costos de operación para sus operaciones de pozos, están totalmente a favor."

> Steve Burks Propietario Oil Field Solutions

Capacidades de Caudal (barriles por día) y Presiones Nominales

		Presión de Descarga Máxima psi (bar)		Máxima Temperatura de Operación F (C) ³		Presión Máxima de
Modelo ¹	Capacidad Máxima bpd (gpm - I/min)	No Metálico ²	Metálico	No Metálico	Metálico	Entrada psi (bar)
F20	34,3 (1,0 - 3,8)	350 (24)	1000 (69)	140° (60°)	250° (121°)	250 (17)
M03	106,3 (3,1 - 11,7)	350 (24)	1000 (69)	140° (60°)	250° (121°)	250 (17)
D04	99,4 (2,9 - 11,2)	N/D	2500 (172)	N/D	250° (121°)	500 (34)
D10 ⁴	147,4 (4,3 - 15,1)	N/D	1500 (103)	N/D	250° (121°)	250 (17)
DIO	277,7 (8,1 - 30,6)	350 (24)	1000 (69)	140° (60°)	250° (121°)	250 (17)
DI2	277,7 (8,1 - 30,6)	N/D	1000 (69)	N/D	250° (121°)	250 (17)
DI5 & DI7	473,1 (13,8 - 52,3)	N/D	2500 (172)	N/D	250° (121°)	500 (34)
H25	685,7 (20,0 - 75,7)	350 (24)	1000 (69)	140° (60°)	250° (121°)	250 (17)
D35 ⁵	792,0 (23,1 - 87,5)	N/D	1500 (103)	N/D	250° (121°)	250 (17)
D35	1251,4 (36,5 - 138)	N/D	1200 (83)	N/D	250° (121°)	500 (34)

- Los valores nominales son para diseño X-cam.
- 350 psi (24 bar) como máximo con el cabezal dosificador PVDF; 250 psi (17 bar) como máximo con cabezal dosificador de polipropileno.
- Consulte con la fábrica para la selección de componentes correcta desde 160°F (71°C) a 250°F (121°C).
- D10 @790 rpm máximo.
- D35 @700 rpm máximo.

Para obtener las especificaciones completas e información sobre pedidos, consulte el catálogo Hydra-Cell.

Bombas Dosificadoras Hydra-Cell Exceden las Normas API 675 y proporcionan un Flujo Lineal "Sin Pulso"

- Diseñada para su uso con control electrónico de flujo de Unidad de frecuencia variable (VFD) para mantener una mayor precisión en todo el rango de regulación.
- Diseño de diafragma múltiple (excepto el P100) que proporciona un flujo prácticamente sin pulso, eliminando la necesidad de comprar costosos amortiguadores de pulsaciones.
- Ofrece todas las características y beneficios de la bombas Hydra-Cell estándar (Bombas Serie F/M/D/H), incluyendo el diseño sin sello, válvulas de retención de disco horizontal, y diseño compacto ahorrador de espacio.
- Variedad de modelos que pueden operar con caudales muy bajos a muy altos y presiones de desarga de hasta 2.500 psi.
- Disponible en una amplia gama de materiales de construcción de cabeza de bomba y materiales de diafragma.

- Cada modelo está disponible con una variedad de ratios de caja de engranajes para satisfacer las necesidades de su aplicación.
- · Variedad de opciones y accesorios para optimizar el rendimiento.

"Usamos nuestra Hydra-Cell para bombear glicol etanol para deshidratar gas natural y ha estado trabajando bien. La hemos tenido durante más de dos años y es fácil de usar y hay un mínimo de mantenimiento, lo que la convierte en una bomba de mayor duración".

Bud Bessler Gerente de Planta Worland Hiland Partners

Capacidades de caudal y presiones nominales

Modelo	Capacidad Máxima	Presión de Descarga Máxima psi (bar)		Máxima Temperatura	Presión Máxima de	
	gph²	No Metálico³	Metálico	No Metálico	Metálico	Entrada psi (bar)
PI00	26,5	350 (24)	1500 (103)	140° (60°)	250° (121°)	250 (17)
P200	80,8	350 (24)	1000 (69)	140° (60°)	250° (121°)	250 (17)
P300	82,3	N/D	2500 (172)	N/D	250° (121°)	500 (34)
P400	243,0	350 (24)	1000 (69)	140° (60°)	250° (121°)	250 (17)
P500	426,0	N/D	2500 (172)	N/D	250° (121°)	250 (17)
P600	894,6	350 (24)	1000 (69)	140° (60°)	250° (121°)	500 (34)

- I Los valores nominales son para diseño X-cam.
- 2 Consulte con la fábrica para valores nominales en litros por hora (LPH).
- 3 350 psi (24 bar) como máximo con el cabezal dosificador PVDF; 250 psi (17 bar) como máximo con cabezal dosificador de polipropileno.
- 4 Consulte con la fábrica para la selección de componentes correcta para temperaturas desde 160°F (71°C) a 250°F (121°C).

Para obtener las especificaciones completas e información sobre pedidos, consulte el catálogo de bombas dosificadoras Hydra-Cell.

World Headquarters & Manufacturing

Wanner Engineering, Inc.
1204 Chestnut Avenue
Minneapolis, MN 55403 USA
Teléfono: 612-332-5681 • Fax: 612-332-6937
Número gratuito Fax (EE.UU.): 800-332-6812
Email: sales@wannereng.com
www.Hydra-Cell.com

207 US Highway 281 Wichita Falls, TX 76310 EE.UU. Teléfono: 940-322-7111 Número gratuito: 800-234-1384 Email: sales@wannereng.com www.Hydra-Cell.com

Oficina en Latinoamérica

R. Álvaro Anes, 150 Bairro Campestre Santo André/São Paulo, Brasil - CEP 09070-030 Teléfono: (11) 4081-7098 Email: mmagoni@wannereng.com www.Hydra-Cell.com

Wanner International, Ltd. Hampshire - Reino Unido Teléfono: +44 (0) 1252 816847 Email: sales@wannerint.com www.Hydra-Cell.eu

Wanner Pumps, Ltd. Kowloon - Hong Kong Teléfono: +852 3428 6534 Email: sales@wannerpumps.com www.WannerPumps.com

Shanghai - China Teléfono: +86-21-6876 3700 Email: sales@wannerpumps.com www.WannerPumps.com

