



# Hydra-Cell® Water Treatment Pumps - Compact, seal-less,



Cleaning & Transfer

• Grey Water

# energy efficient design for lowest total life cycle cost.



PolyClay's

# **Oxygen Scavenging**

- Phosphate Solutions
- Boiler Feed Water Treatment

# Hydra-Cell® Pumps in Water Treatment

One technology - many applications



The unique attributes of Hydra-Cell® pumps offer distinct benefits in pumping the many chemicals and polymers used for water treatment, as well as brackish and 'grey' water that may contain particulate matter, making Hydra-Cell® the clear seal-less pump of choice for:

• Dosing • Metering • Injection • Cleaning • High Pressure Transfer

| Typical Chemicals and<br>Liquids Pumped                                                                                                                                                 | Challenges in Pumping                                                                                                            | The Hydra-Cell® Advantage                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Alum for coagulating very fine suspended particles in potable water                                                                                                                     | Abrasive     Corrosive                                                                                                           | Seal-less design handles abrasive liquids     Corrosion resistant liquid head materials available            |
| Ferric Chloride<br>for flocculation                                                                                                                                                     | Attacks any Iron containing parts, can<br>crystallise causing damage to pumps<br>which can not handle liquids with<br>particles. | Iron-free liquid head materials     Horizontal check valves for efficient handling of liquids with particles |
| Grey Water (Containing particles) used in high pressure cleaning applications including algae growth removal from weirs in settling tanks and screen and filter cleaning / back-washing | Solid particles in water                                                                                                         | <ul> <li>Seal-less design handles particles up to 500 μm</li> <li>Reducing operating costs</li> </ul>        |
| Hydrochloric Acid (up to 37% conc.) for pH correction                                                                                                                                   | Corrosive     Crystallisation occurs causing clogging                                                                            | Seal-less design provides no leak path     Horizontal check valves                                           |
| Hydrogen Peroxide (H2O2) for disinfection                                                                                                                                               | <ul><li>Corrosive</li><li>Light sensitive</li><li>Out gassing</li></ul>                                                          | Corrosion resistant liquid head materials available                                                          |

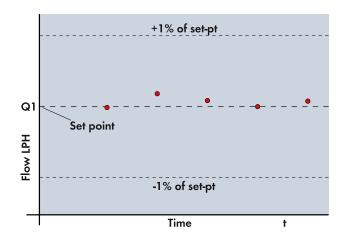
| Typical Chemicals and<br>Liquids Pumped                                                                                       | Challenges in Pumping                                                                             | The Hydra-Cell® Advantage                                                                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Iron Sulphate (FeSO <sub>4</sub> ) for precipitation of Phosphates and heavy metals                                           | Sensitive to air and oxides when in<br>contact with moisture forming corrosive<br>ferric sulphate | Seal-less design provides 100% containment                                                                                                                                                   |  |
| Lime Slurries for pH balance and water softening                                                                              | Abrasive     Smooth controllable flow     Requires smooth controllable flow                       | <ul> <li>Seal-less design handles abrasive materials</li> <li>Flow rate directly proportionate to pump rpm</li> <li>Virtually pulse-less, easily controllable flow</li> </ul>                |  |
| Manganese Oxide<br>suspended in water used for<br>removal of EE2                                                              | Abrasive liquid contains non-soluable solids                                                      | Seal-less design handles abrasive liquids reliably                                                                                                                                           |  |
| Phosphate Solutions for oxygen scavenging of high- pressure steam lines, prevention of scale build up and corrosion reduction | Corrosive High discharge pressure Crystallisation on contact with air                             | <ul> <li>Seal-less design</li> <li>Hydraulically balanced diaphragms</li> <li>Seal-less design prevents air ingress</li> <li>Horizontal check valves reduces clogging</li> </ul>             |  |
| Polymers and Poly-<br>electrolytes<br>for flocculation, coagulation and<br>clarification                                      | <ul><li>Shear sensitive</li><li>High viscosity</li><li>Smooth controllable flow</li></ul>         | <ul> <li>Low shear pumping action</li> <li>Horizontal check valves</li> <li>Virtually pulse-less, easily controllable flow</li> <li>Flow rate directly proportionally to pump rpm</li> </ul> |  |
| Potassium Permanganate for removal of objectionable tastes and odours                                                         | Potentially harmful and toxic     Accurate dosing essential                                       | <ul> <li>Seal-less design provides 100% containment</li> <li>Flow rate directly proportionate to pump rpm, dosing accuracy better than +/- 0.5% can be achieved</li> </ul>                   |  |
| Sodium Hydroxide<br>for pH control                                                                                            | Crystallisation occurs causing clogging     Aggressive                                            | Horizontal check valves     Corrosion resistant liquid head materials available                                                                                                              |  |
| Sodium Hypochlorite for disinfection and odour control                                                                        | Out gassing     Crystallisation occurs causing clogging                                           | High pump speed, high compression ratio, large discharge ports     Horizontal check valves reduce clogging.                                                                                  |  |
| Sulphuric Acid  for pH correction in potable water and air scrubbing                                                          | Seal-less design provides no leak path     Horizontal check valves                                |                                                                                                                                                                                              |  |



G20 with Electronic Flow Rate Controller 3 - 190 L/hr



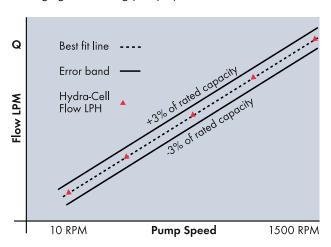
G13 with Electronic Flow Rate Controller 9 - 560 L/hr


# Ultimate Controllability for Metering and Dosing

Metering and Dosing performance better than API 675

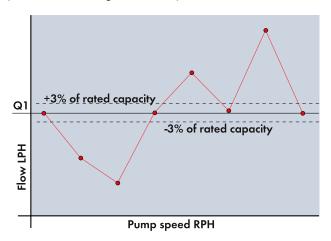
Obtaining process consistency & reliability using hydraulically balanced diaphragm technology and multiple diaphragms in a single pump head sequentially actuated

#### Steady state accuracy better than +/- 1%


This is a measure of how well a set flow rate can be maintained.



#### **Linearity** better than +/- 3%


(Pump shaft speed/flow rate relationship)

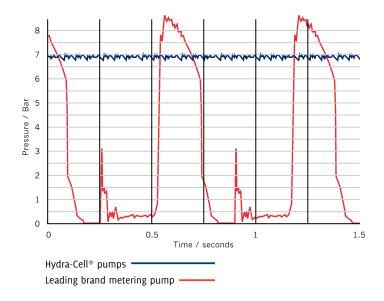
This is a measure of how accurate the flow rate can be set by changing and setting pump speed.



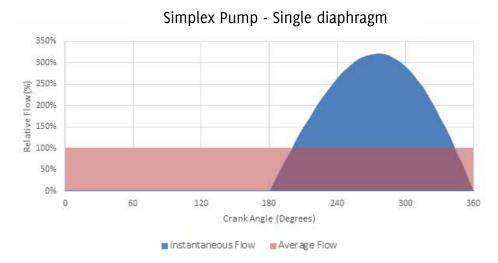
#### Repeatability better than +/- 3%

This is a measure of how accurate the flow rate can be controlled when varying the pump shaft rpm away from a set point and returning to that set point.




#### Accuracy & Controllability

• Ease of Local / Remote operation

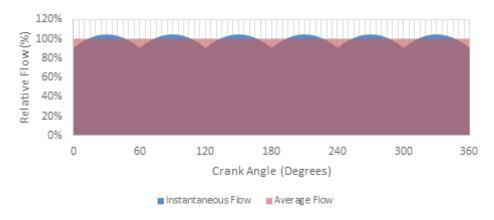



# Virtually pulse-less flow for accurate metering

- Pulsation dampeners are not required for most
   Hydra-Cell® pumps, thus reducing the risk of pipe strain
- Excluding Pulsation dampers reduces the initial installation costs, along with any ongoing maintenance & charging costs and removes a variable from the hydraulic system
- More accurate control of flow rate and efficient use of chemicals.
- Significantly less inlet acceleration head issues than traditional single diaphragm metering pumps, especially with viscous liquids.

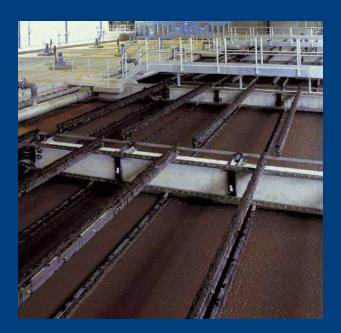


# Comparison of Single diaphragm pump vs. Triplex diaphragm pump




# Eliminating pipe strain

Low pulsation equates to low maintenance




# Hydra-Cell® Triplex Pump - Three diaphragms



# Hydra-Cell® Advantages

There are widespread applications for Hydra-Cell® pumps throughout the water treatment industry. Potable water treatment, wastewater treatment and the collection network can all benefit from the use of Hydra-Cell®, unique, seal-less, multi-diaphragm pumping technology.



#### Unique vertical check valves



- Reliably pump acids and caustics which crystallise.
- Efficient pumping of liquids with solids such as lime slurries and MgO<sub>2</sub> water mixes.
- Horizontal liquid flow and vertical check valves ensure reliable handling of liquids with suspended solids

# Seal-less pumping chamber

- Liquids are 100% sealed from the atmosphere protecting chemicals from atmospheric moisture and air which could lead to chemical degradation
- Continuously run dry capable
- No seal maintenance
- No leak path for toxic vapours
- Can pump liquids with solid particles up to 500 μm.
- Non-lubricating liquids can be pumped reliably
- Reliable high pressure cleaning with grey water

### Low shear pumping action

A change in viscosity of a polymer is an indication of degradation of that polymer. If a polymer is subject to a shear this can reduce the viscosity. Reducing the effectiveness of the polymer resulting in increase volumes of polymer being used.

During pumping of a polymer, as it flows through the pump, if the polymer is subject to velocity differences through the polymer a shear is applied. The design of the Hydra-Cell is such that these velocity gradients are minimised.

Exhaustive customer testing on shear sensitive polymers from 200cps to 3500cps have shown that the hydra-cell pumping action achieves the lowest shear. Especially in high pressure applications, testing up to 200 bar.

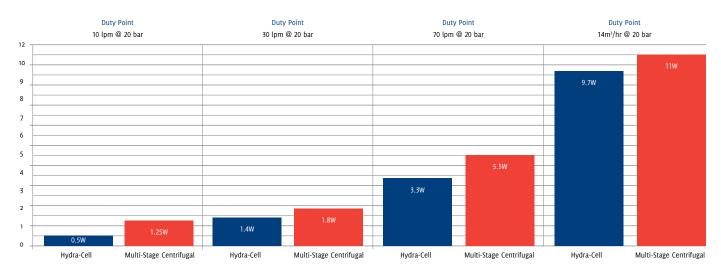


# High efficiencies - low power consumption

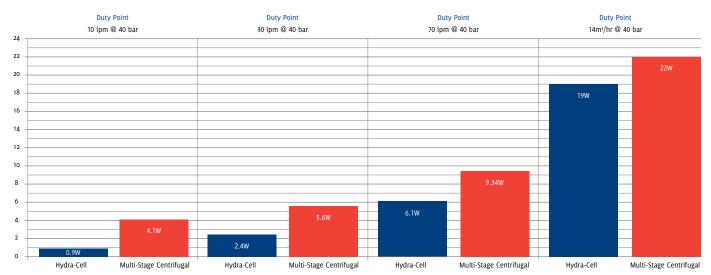
As a true positive displacement pump Hydra-Cell® can show significant energy savings when compared to screw pumps and multi-stage centrifugal pumps.

- When pumping non-lubricating or abrasive liquids, Hydra-Cell®'s seal-less design means that there is no decline in efficiency as the seals wear.
- In cleaning and transfer applications below 15m³/hr the following energy savings can be made.

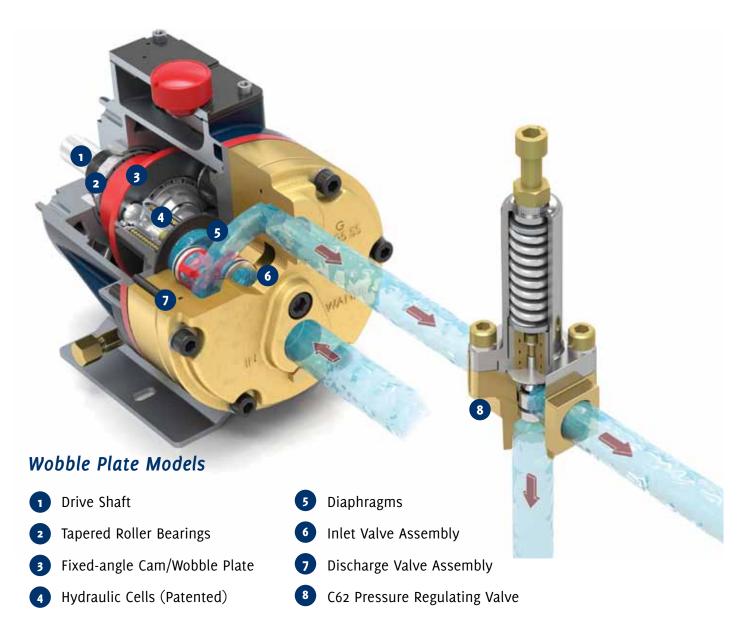



# Compared with multi-stage centrifugal pumps pumping water 20 bar:

| Flow    | Energy u    | sed (kw)   | Energy | Potential<br>annual euro<br>saving |  |
|---------|-------------|------------|--------|------------------------------------|--|
| (m³/hr) | Centrifugal | Hydra-Cell | saving |                                    |  |
| 0.6     | 1.54        | 0.5        | 67%    | 945                                |  |
| 1.5     | 2.0         | 1.44       | 28%    | 470                                |  |
| 14      | 11          | 9.7        | 12%    | 973                                |  |


# Compared with multi stage centrifugal pumps pumping water 40 bar:

| Flow    | Energy u    | sed (kw)   | Energy | Potential<br>annual euro<br>saving |  |
|---------|-------------|------------|--------|------------------------------------|--|
| (m³/hr) | Centrifugal | Hydra-Cell | saving |                                    |  |
| 4.2     | 9.34        | 6.1        | 35%    | 2,830                              |  |
| 7.6     | 15.4        | 11.0       | 28%    | 3,840                              |  |
| 14      | 22          | 19         | 14%    | 3,145                              |  |


# Hydra-Cell vs. Multi-Stage Centrifugal Pumps – 20 bar Applications



# Hydra-Cell vs. Multi-Stage Centrifugal Pumps – 40 bar Applications



# Hydra-Cell® Principles of Operation - Wobble Plate



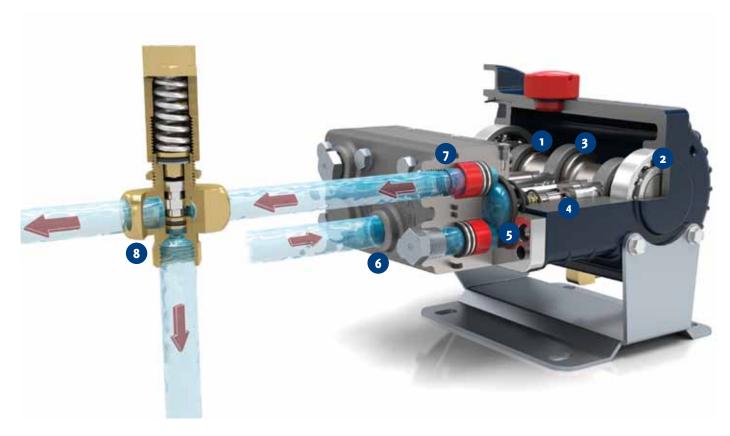
# Reliable, Efficient Pumping Action

The drive shaft (1) is rigidly held in the pump housing by a large tapered roller bearing (2) at the rear of the shaft and a smaller bearing at the front of the shaft. Set between another pair of large bearings is a fixed-angle cam or Wobble Plate (3).

As the drive shaft turns, the swash plate moves, oscillating forward and back (converting axial motion into linear motion). The complete pumping mechanism is submerged in a lubricating oil bath.

The hydraulic cell (4) is moved sequentially by the Wobble plate and filled with oil on their rearward stroke. A ball check valve in the bottom of the piston ensures that the cell remains full of oil on its forward stroke.

The oil held in the Hydra-Cell balances the back side of the diaphragms (5) and causes the diaphragms to flex forward and back as the Wobble plate moves. This provides the pumping action


To provide long trouble-free diaphragm life, Hydra-Cell hydraulically balances the diaphragm over the complete

pressure range of the pump. The diaphragm faces only a 0.21 bar pressure differential regardless of the pressure at which liquid is being delivered - up to 172 bar on standard Hydra-Cell models and Hydra-Cell metering pumps.

Hydra-Cell Wobble plate pumps can have up to five diaphragms, and each diaphragm has its own pumping chamber that contains an inlet and discharge self-aligning spring loaded check valve assembly (6). As the diaphragms move back, liquid enters the pump through a common inlet and passes through one of the inlet check valves. On the forward stroke, the diaphragm forces the liquid out the discharge check valve (7) and through the manifold common outlet. Equally spaced from one another, the diaphragms operate sequentially to provide consistent, low-pulse flow.

A Hydra-Cell C62 pressure regulating valve (8) is typically installed on the discharge side of the pump to regulate the pressure of downstream process or equipment.

# Hydra-Cell® Principles of Operation - Crankshaft



#### Crank-shaft Models

- 1 Drive Shaft
- Precision Ball Bearings
- Connecting Rods
- 4 Hydraulic Cells (Patented)
- Diaphragms
- 6 Inlet Valve Assembly
- 7 Discharge Valve Assembly
- 8 C46 Pressure Regulating Valve (In-line)

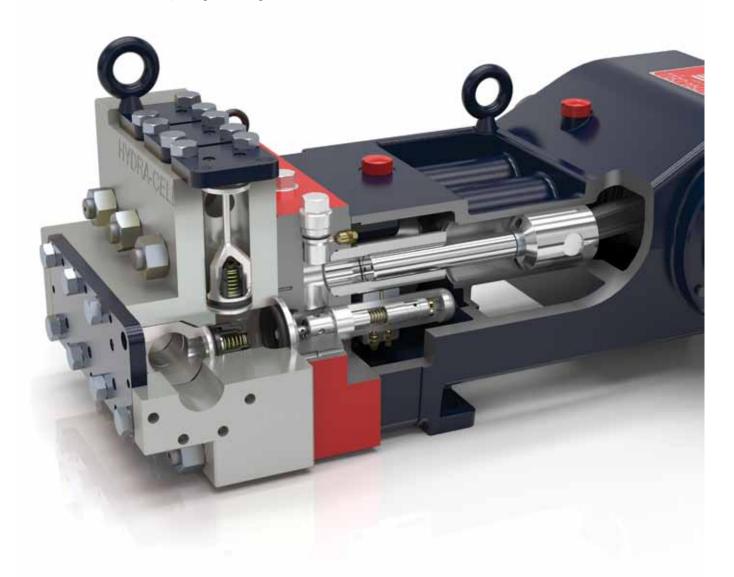
#### Reliable, Efficient Pumping Action

The drive shaft (1) is supported in position by two precision ball bearings (2) positioned at either end of the shaft. Located between these bearings are either one or three cam shaft lobes with connecting rods (3) that are hardened, precision ground, and polished. Maintaining a high level of quality on the cam lobes and connecting rod surfaces ensures proper lubrication and reduced operating temperatures in the hydraulic end of the pump.

As the drive shaft turns, each cam actuates the attached connecting rod that is pinned into position at the end of each hydraulic piston. This action moves the piston forward and backward, converting the axial motion into linear pumping motion. The complete pumping mechanism is submerged in a lubricating oil bath.

Each piston contains a patented hydraulic cell (4) that is moved sequentially by the crank-shaft. The innovative and proprietary Hydra-Cell maintains the precise balance of oil behind the diaphragm (5) regardless of the operating conditions of the pump. The oil in Hydra-Cell is pressurized on the forward stroke of the piston causing the diaphragm to flex,

which drives the pumping action. The oil held in the Hydra-Cell balances the diaphragm against the liquid being pumped, maintaining no more than a 0.21 bar differential regardless of the pressure at which the liquid is being delivered - up to 172 bar on standard Hydra-Cell models and Hydra-Cell metering pumps.


Hydra-Cell crank-shaft pumps can have up to three diaphragms, and each diaphragm has its own pumping chamber that contains an inlet and discharge self-aligning spring loaded check valve assembly (6). As the diaphragms move back, liquid enters the pump through a common inlet and passes through one of the inlet check valves. On the forward stroke, the diaphragm forces the liquid out of the discharge check valve (7) and through the manifold common outlet. Equally spaced from one another, the diaphragms operate sequentially to provide consistent, low-pulse flow.

A Hydra-Cell C46 pressure regulating valve (8) is typically installed on the discharge side of the pump to regulate the pressure of downstream process or equipment.

# Hydra-Cell® Principles of Operation - T Series

API 674 option available

#### **Exclusive Seal-less Diaphragm Design**



- Seal-less design separates the power end from the process liquid end, eliminating leaks, hazards, and the expense associated with seals and packing
- Low NPSH requirements allow for operation with a vacuum condition on the suction - positive suction pressure is not necessary
- Can operate with a closed or blocked suction line and run dry indefinitely without damage, eliminating downtime and repair costs
- Unique diaphragm design handles more abrasives with less wear than gear, screw or plunger pumps

- Hydraulically balanced diaphragms to handle high pressures with low stress
- Provides low-pulse, linear flow due to its multiple diaphragm design
- Lower energy costs than centrifugal pumps and other pump technologies
- Rugged construction for long life with minimal maintenance
- Compact design and double-ended shaft provides a variety of installation options
- Hydra-Cell T-Series pumps can be configured to meet
   API 674 standards consult factory for details

Hydra-Cell T8o Series pumps received a "Spotlight on New Technology" award from the Offshore Technology Conference.



# **Hydra-Cell® Metering and Dosing Control Options**

For G and P-Series pumps

# Electronic Flow Rate Adjustment For Local Control and Remote Control

- ATEX Dust Zone 21 (Ex tb III C T125c Db)
- IP66 Standard
- Various flow rate adjustments options including:
  - On-board potentiometer(s)
  - On-board key-pad controller with flow rate display
  - Removable, hand-held key-pad controller for authorised personnel only





On-board keypad control

Hand-held keypad control

# Control Freak For Sophisticated Local Control

- Option available to control up to 6 x Hydra-Cell pumps with one Hydra-Cell "Control Freak"
- Multiple Variable Frequency Dive (VFD) options
- Enables programming for flow rate or totalisation
- Allows up to 10 x separate batch sequences
- Built-in Calibration mode



# Mechanical Flow Rate Adjustment For Local Control

- ATEX Zone 1
- Linear fine adjustment scale on hand-wheel
- High reliability due to frictionless design
- Option to fit a mechanical lock to prevent unauthorised flow rate change





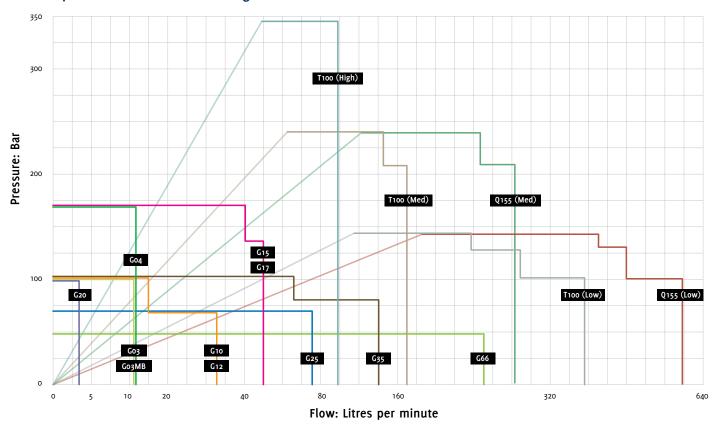
# Hydra-Cell G Series Seal-less Pumps



Hydra-Cell T Series Seal-less Pumps



Hydra-Cell Q Series Seal-less Pumps




Hydra-Cell P Series Seal-less Metering Pumps



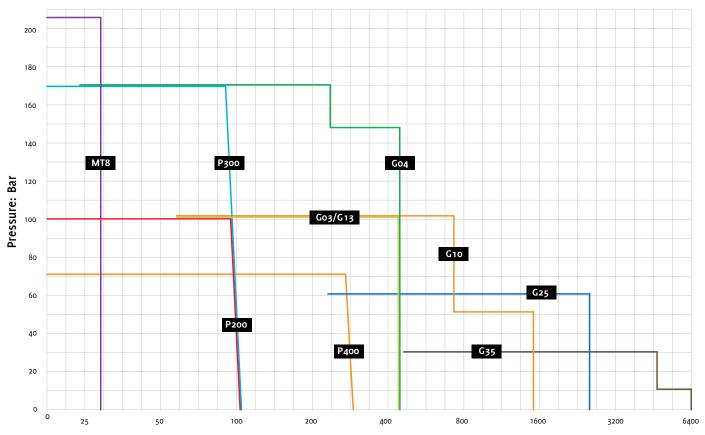
# Hydra-Cell® Industrial & Process Pumps

# Flow Capacities and Pressure Ratings



The graph above displays the maximum flow capacity at a given pressure for each model series. The table below lists the maximum flow capacity and maximum pressure capability of each model series.

Please Note: Some models do not achieve maximum flow at maximum pressure. Refer to the individual model specifications in this section for precise flow and pressure capabilities by specific pump configuration.


| Model Maximum<br>Capacity<br>I/min | Capacity | Maximum Discharge<br>Pressure bar |          | Maximum Operating<br>Temperature °C² |          | Maximum<br>Inlet Pressure |
|------------------------------------|----------|-----------------------------------|----------|--------------------------------------|----------|---------------------------|
|                                    | l/min    | Non-Metallic <sup>1</sup>         | Metallic | Non-Metallic                         | Metallic | bar                       |
| G20                                | 3.8      | 24                                | 103      | 60°                                  | 121°     | 17                        |
| G03                                | 11.7     | 24                                | 103      | 60°                                  | 121°     | 17                        |
| Go4                                | 11.2     | N/A                               | 200      | N/A                                  | 121°     | 34                        |
| G10                                | 33.4     | 24                                | 103      | 60°                                  | 121°     | 17                        |
| G12                                | 33.4     | N/A                               | 103      | N/A                                  | 121°     | 17                        |
| G15/17                             | 58.7     | N/A                               | 172      | N/A                                  | 121°     | 34                        |
| G25                                | 75.9     | 24                                | 69       | 60°                                  | 121°     | 17                        |
| G35                                | 138      | N/A                               | 103      | N/A                                  | 121°     | 34                        |
| G66                                | 248      | 17                                | 48       | 49°                                  | 121°     | 17                        |
| T100S                              | 98       | N/A                               | 345      | N/A                                  | 82°      | 34                        |
| T100M                              | 144      | N/A                               | 241      | N/A                                  | 82°      | 34                        |
| T100K                              | 170      | N/A                               | 207      | N/A                                  | 82°      | 34                        |
| T100H                              | 259      | N/A                               | 145      | N/A                                  | 82°      | 34                        |
| T100F                              | 290      | N/A                               | 128      | N/A                                  | 82°      | 34                        |
| T100E                              | 366      | N/A                               | 103      | N/A                                  | 82°      | 34                        |
| Q155E                              | 595      | N/A                               | 103      | N/A                                  | 82°      | 34                        |
| Q155F                              | 490      | N/A                               | 127      | N/A                                  | 82°      | 34                        |
| Q155H                              | 421      | N/A                               | 144      | N/A                                  | 82°      | 34                        |
| Q155K                              | 295      | N/A                               | 207      | N/A                                  | 82°      | 34                        |
| Q155M                              | 253      | N/A                               | 241      | N/A                                  | 82°      | 34                        |

<sup>24</sup> bar maximum with PVDF (Kynar®) liquid end; 17 bar maximum with Polypropylene liquid end.

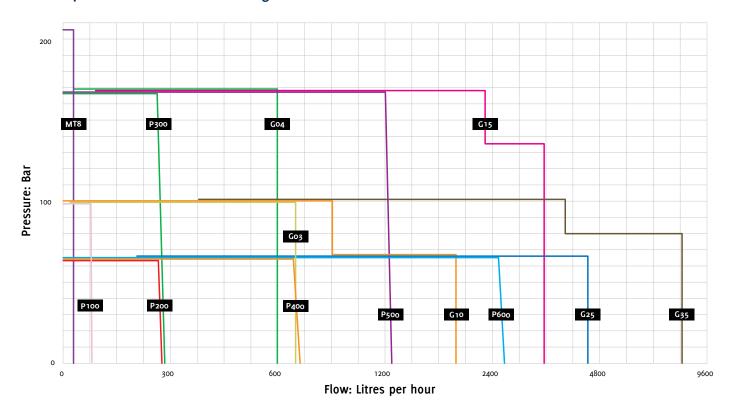
<sup>2</sup> Consult factory for correct component selection for temperatures from 160°F (71°C) to 250°F (121°C).

# Hydra-Cell® Metering & Dosing Pumps – ATEX / Explosive Areas

# Flow Capacities and Pressure Ratings



Flow: Litres per hour


| Model Maximum<br>Capacity |      |               |          | Maximum Oper | Maximum Operating Temperature °C² |    |
|---------------------------|------|---------------|----------|--------------|-----------------------------------|----|
|                           | l/hr | Non-Metallic¹ | Metallic | Non-Metallic | Metallic                          |    |
| MT8                       | 30   | N/A           | 241      | N/A          | 121°                              | 17 |
| P200                      | 102  | 24            | 103      | 60°          | 121°                              | 17 |
| P300                      | 95   | N/A           | 172      | N/A          | 121°                              | 34 |
| P400                      | 305  | 24            | 69       | 60°          | 121°                              | 17 |
| G13 - M2H                 | 462  | 24            | 103      | 60°          | 121°                              | 17 |
| G13 - M2M                 | 462  | 24            | 60       | 60°          | 121°                              | 17 |
| G13 - M4L                 | 230  | 24            | 20       | 60°          | 121°                              | 17 |
| G13 - M2L                 | 462  | 24            | 20       | 60°          | 121°                              | 17 |
| Go4 - M4H                 | 226  | N/A           | 172      | N/A          | 121°                              | 34 |
| G04 - M2M                 | 452  | N/A           | 150      | N/A          | 121°                              | 34 |
| G10 - M4H                 | 732  | 24            | 103      | 60°          | 121°                              | 17 |
| G10 - M2M                 | 1470 | 24            | 50       | 60°          | 121°                              | 17 |
| G10 - M4L                 | 732  | 20            | 20       | 60°          | 121°                              | 17 |
| G10 - M2L                 | 1470 | 20            | 20       | 60°          | 121°                              | 17 |
| G25 - M4L                 | 2600 | 20            | 20       | 60°          | 121°                              | 17 |
| G25 - M4M                 | 2600 | 24            | 60       | 60°          | 121°                              | 17 |
| G35 - M2L                 | 6360 | N/A           | 10       | N/A          | 121°                              | 10 |
| G35 - M4L                 | 4800 | N/A           | 30       | N/A          | 121°                              | 17 |

<sup>1 24</sup> bar maximum with PVDF (Kynar®) liquid end; 17 bar maximum with Polypropylene liquid end.

<sup>2</sup> Consult factory for correct component selection for temperatures from 160°F (71°C) to 250°F (121°C).

# Hydra-Cell® Metering & Dosing Pumps - Electronic Control

# Flow Capacities and Pressure Ratings



| Model | Capacity |               | Maximum Discharge Pressure bar |              | Maximum Operating Temperature °C² |    |
|-------|----------|---------------|--------------------------------|--------------|-----------------------------------|----|
| l/hr  | l/hr     | Non-Metallic¹ | Metallic                       | Non-Metallic | Metallic                          |    |
| MT8   | 30       | N/A           | 241                            | N/A          | 121°                              | 17 |
| P100  | 85       | 24            | 103                            | 60°          | 121°                              | 17 |
| P200  | 255      | 24            | 103                            | 60°          | 121°                              | 17 |
| P300  | 257      | N/A           | 172                            | N/A          | 121°                              | 34 |
| P400  | 766      | 24            | 69                             | 60°          | 121°                              | 17 |
| P500  | 1244     | N/A           | 172                            | N/A          | 121°                              | 34 |
| P600  | 2808     | 24            | 69                             | 60°          | 121°                              | 17 |
| Go3   | 660      | 24            | 103                            | 60°          | 121°                              | 17 |
| Go4   | 660      | N/A           | 172                            | N/A          | 121°                              | 34 |
| G10   | 1800     | 24            | 69                             | 60°          | 121°                              | 17 |
| G10   | 900      | 24            | 103                            | 60°          | 121°                              | 17 |
| G15   | 2940     | N/A           | 138                            | N/A          | 121°                              | 34 |
| G15   | 2280     | N/A           | 172                            | N/A          | 121°                              | 34 |
| G25   | 4560     | 24            | 69                             | 60°          | 121°                              | 17 |
| G35   | 8280     | N/A           | 83                             | N/A          | 121°                              | 34 |
| G35   | 3960     | N/A           | 103                            | N/A          | 121°                              | 17 |

<sup>1 24</sup> bar maximum with PVDF (Kynar®) liquid end; 17 bar maximum with Polypropylene liquid end.

<sup>2</sup> Consult factory for correct component selection for temperatures from 160°F (71°C) to 250°F (121°C).

# Hydra-Cell® Materials of Construction

As part of our "Mass Customisation" philosophy, every Hydra-Cell pump is built with manifolds, elastomeric materials,

and valve assemblies using construction materials specified by the customer.

Hydra-Cell distributors and factory representatives are readily available to assist customers in selecting the materials best suited to the process application. (The range of material choices depends on each pump model – for example, models designed to operate at higher pressures are available with metallic pump heads only.)

## Manifolds

Manifolds for Hydra-Cell pumps are available in a variety of materials to suit your process application. They are easy to replace and interchangeable to accommodate different liquids processed by the same pump. Special manifolds with a 2:1 dosing ratio are also available. (Consult factory.)

#### Non-metallic Pump Heads

Non-metallic pump heads are often used when a corrosive or aggressive liquid is being processed at lower pressures.

- Polypropylene
- PVDF

#### Metallic Pump Heads

Metallic pump heads can handle higher operating pressures. Hastelloy CW12MW or Stainless Steel is also selected for corrosion resistance and other properties.

- Brass
- Bronze
- Cast Iron (Nickel-plated)
- Duplex Alloy 2205
- Super Duplex Alloy 2507
- Hastelloy CW12MW





# Diaphragms and 0-rings

Diaphragms and corresponding o-rings are available in several elastomeric materials.

- Aflas (used with PTFE 0-ring)
- Butyl
- Buna-N
- EPDM (requires EPDM-compatible oil)
- FFKM
- FKM
- Neoprene
- PTFE





#### Valve Materials

Hydra-Cell valve assemblies (seats, valves, springs, and retainers) are available in a variety of materials to suit your process application.

#### Valve Seats

- Ceramic
- Hastelloy CW12MW
- Nitronic 50
- Tungsten Carbide
- 17-4 PH Stainless Steel
- 316L Stainless Steel

#### **Valves**

- Ceramic
- Hastelloy CW12MW
- Nitronic 50
- Tungsten Carbide
- 17-4 PH Stainless Steel

# Valve Springs

- Elgiloy (Exceeds SST grade 316L)
- Hastelloy CW12MW
- 17-7 PH Stainless Steel
- 316L Stainless Steel

#### Valve Spring Retainers

- Celcon
- Hastelloy CW12MW
- Nylon (Zytel)
- Polypropylene
- PVDF
- 17-7 PH Stainless Steel

# Registered trademarks of materials:

Aflas® Asahi Glass Co., Ltd.

Buna®-N (Nitrile) E.I. Du Pont de Nemours and

Company, Inc.

Celcon® Celanese Company

Elgiloy® Elgiloy Limited Partnership

Hastelloy® CW12MW Haynes International, Inc.

Kynar<sup>®</sup> (PVDF) Arkema, Inc.

Mesamoll® Lanxess Deutschland GmbH
Neoprene® E.I. Du Pont de Nemours and

Company, Inc.

Nitronic® 50 AK Steel Corporation

Teflon® (PTFE) E.I. Du Pont de Nemours and

Company, Inc.

Viton® (FKM) DuPont Performance

Elastomers, LLC

Zytel® (Nylon) E.I. Du Pont de Nemours and

Company, Inc.

# Hydra-Cell® S Series Solenoid Metering Pumps

The S Series pumps provide an economical choice for chemical injection in metering applications.

Solenoid driven, the S pumps feature a wide discharge-volume range, extensive choice of liquid end materials, various control functions, and a wide voltage range.

Materials of construction choices and versatile design options result in pumps perfected for specific applications including general chemicals, high-pressure boiler, high-viscosity fluids, outgassing and more.

| Flow Rate         | SM Series<br>Models | SP/ST/SA Series<br>Models |
|-------------------|---------------------|---------------------------|
| 30 ml/min         | SMo30               | SP/ST/SA-030              |
| 60 ml/min         | SMo6o               | SP/ST/SA-o6o              |
| 100 ml/min        | SM100               | SP/ST/SA-100              |
| 200 ml/min        | N/A                 | SP/ST/SA-200              |
| With Relief Valve |                     |                           |
| 30 ml/min         | SMo <sub>3</sub> R  | SP/ST/SA-03R              |
| 60 ml/min         | SMo6R               | SP/ST/SA-o6R              |
| 100 ml/min        | SM10R               | SP/ST/SA-10R              |



SM030CAS manual control with stroke speed dial.



SP060HVS digital with pulse-in control



STO3RPES digital with pulse-in control and timer.



SA03RPES digital with pulse-in and analog-in.

# "Eco-friendly" Mode Reduces Power Consumption up to 55%

Unlike conventional pumps that are always turned on for a specific time period regardless of the discharge pressure, S Series "Eco-friendly" pumps with pulse control automatically cut the power-on time in accordance with the discharge pressure.

The "Eco-friendly" mode of SP/ST/SA models always monitors operation conditions and automatically shortens the power-on time during low-pressure operation in order to reduce power consumption and operating costs.

# Safety Features to Handle Abnormal Pressure

Safe Mode - liquid transfer force is controlled during nodischarge operation to prevent abnormal pressure buildup. (Not available for SP/ST/SA-200 models or for boiler and highpressure applications.)

Integral Relief Valve - releases abnormal pressure automatically if the pressure exceeds the set value. (Not available for high-viscosity and high-pressure applications.)

Abnormal Pressure Sensor - alarm sounds if abnormal pressure builds up due to clogged pipes or if the discharge valve is closed. (Available with SP/ST/SA models only.)

# **S Series Components and Accessories** to Enhance System Performance

#### Double-ball Check Valve

Controls valve opening and closing speeds to help ensure metering accuracy and reduce the possibility of water hammer.

#### Anti-siphon Check Valve

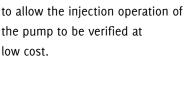
Prevents clogging at the injection point and also aids in priming.



# **Solution Tanks**

Integral Relief Valve

Safety valve that automatically


releases excess pressure that builds up inside the discharge side pipes. This can occur due

to clogging of the pipes or if the discharge valve is closed.

For large-capacity chemical injection. Special features include a float switch that sounds an alarm when it is time to refill the tank, and a drain valve that drains excess moisture from the system.



# Resistant to acids and alkalis the pump to be verified at





### Foot Valve

Flow Checker

Designed to prevent backflow into chemical injection systems.



# Spare Parts Kits

30L (7.9 gal)

Spare parts kits to help extend service life.

50L (13.2 gal)

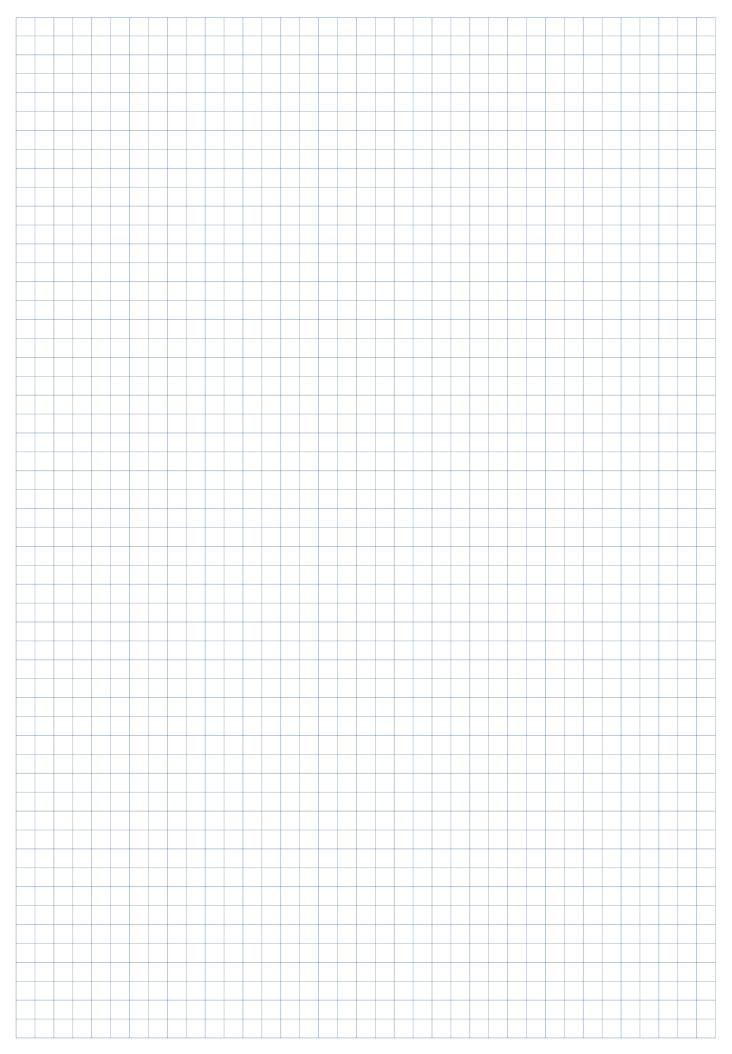


#### SM Series Spare Parts Kit

# SP/SA/ST Series Spare Parts Kit

# **Degassing Joint**

Separates absorbed air bubbles from the liquid to prevent air bubbles from entering the pump head.










# Notes





# WANNER ENGINEERING - WORLD HEADQUARTERS & MANUFACTURING Minneapolis USA $% \left( \mathbf{R}\right) =\left( \mathbf{R}\right) ^{2}$

t: (612) 332-5681 e: sales@wannereng.com

#### WANNER PUMPS Shanghai CHINA

t: +86-21-6876 3700 e: sales@wannerpumps.com

#### WANNER INTERNATIONAL

Hampshire UK

t: +44 (0) 1252 816847 e: sales@wannerint.com

#### WANNER ENGINEERING Latin American Office

t: +55 (11) 3565 4001 e: sales@wannereng.com

# WANNER PUMPS Kowloon HONG KONG

t: +852 3428 6534 e: sales@wannerpumps.com